Vaccinia virus () F17 protein is a major virion structural phosphoprotein having a molecular weight of 11 kDa. Recently, it was shown that F17 synthesised in infected cells interacts with mTOR subunits to evade cell immunity and stimulate late viral protein synthesis. Several years back, we purified an 11 kDa protein that inhibited protein synthesis in reticulocyte lysate from virions, and that possesses all physico-chemical properties of F17 protein.
View Article and Find Full Text PDFThe production of full length, biologically active proteins in mammalian cells is critical for a wide variety of purposes ranging from structural studies to preparation of subunit vaccines. Prior research has shown that Modified vaccinia virus Ankara encoding the bacteriophage T7 RNA polymerase (MVA-T7) is particularly suitable for high level expression of proteins upon infection of mammalian cells. The expression system is safe for users and 10-50 mg of full length, biologically active proteins may be obtained in their native state, from a few litres of infected cell cultures.
View Article and Find Full Text PDFThe vaccinia virus expression system is known for the efficient production of recombinant proteins with "appropriate" posttranslational modification using desired mammalian cell lines. However, being a replication competent virus, vaccinia virus poses a health threat to immunocompromised individuals and requires biosafety level 2 (BSL2) laboratory precautions, thereby restricting its use by the scientific community. Development of the host range restricted modified vaccinia Ankara (MVA) system has allowed researchers to work with a safer virus even at BSL1.
View Article and Find Full Text PDFThe human type IIA topoisomerases (Top2) are essential enzymes that regulate DNA topology and chromosome organization. The Topo IIα isoform is a prime target for antineoplastic compounds used in cancer therapy that form ternary cleavage complexes with the DNA. Despite extensive studies, structural information on this large dimeric assembly is limited to the catalytic domains, hindering the exploration of allosteric mechanism governing the enzyme activities and the contribution of its non-conserved C-terminal domain (CTD).
View Article and Find Full Text PDFGlossina palipides salivary gland hypertrophy virus (GpSGHV) infects tsetse flies, which are vectors for African trypanosomosis. This virus represents a major challenge in insect mass rearing and has hampered the implementation of the sterile insect technique programs in the Member States of the International Atomic Energy Agency. GpSGHV virions consist of long rod-shaped particles over 9000Å in length, but little is known about their detailed structural organization.
View Article and Find Full Text PDFLabeling nuclear proteins with electron dense probes in living cells has been a major challenge due to their inability to penetrate into nuclei. We developed a lipid-based approach for delivering antibodies coupled to 0.8 nm ultrasmall gold particles into the nucleus to label RNA polymerase II.
View Article and Find Full Text PDFAntimicrob Agents Chemother
September 2014
The availability of adequate treatments for poxvirus infections would be valuable not only for human use but also for veterinary use. In the search for novel antiviral agents, a 1'-methyl-substituted 4'-thiothymidine nucleoside, designated KAY-2-41, emerged as an efficient inhibitor of poxviruses. In vitro, KAY-2-41 was active in the micromolar range against orthopoxviruses (OPVs) and against the parapoxvirus orf.
View Article and Find Full Text PDFPurified protein expression level and quality are contingent upon specific host expression systems. This differential production is particularly observed for proteins of high molecular weight, hampering further structural studies. We developed an expression method aimed at producing proteins in Escherichia coli, insect, and mammalian systems.
View Article and Find Full Text PDFProduction of recombinant protein in mammalian cells is time-consuming, labor-intensive and costly. While seeking to overcome these limitations, we discovered that Vaccinia virus has the innate ability to transfer exogenous plasmid DNA into mammalian cells during the infection process. Parameters influencing the efficiency of this event were characterized and a quick, simple and inexpensive way to produce eukaryotic proteins was established.
View Article and Find Full Text PDFThe vaccinia virus (VACV) Lister strain was one of the vaccine strains that enabled smallpox eradication. Although the strain is most often harmless, there have been numerous incidents of mild to life-threatening accidents with this strain and others. In an attempt to further attenuate the Lister strain, we investigated the role of 5 genomic regions known to be deleted in the modified VACV Ankara (MVA) genome in virulence in immunodeficient mice, immunogenicity in immunocompetent mice, and vaccine efficacy in a cowpox virus challenge model.
View Article and Find Full Text PDFModified vaccinia virus Ankara (MVA) is a safe vector for high-level expression of proteins in mammalian cells. To simplify the molecular cloning procedures for shuttling genes into the MVA genome, we constructed generic destination plasmids that allow in vitro recombinational cloning (Gateway) and quick isolation of expression plasmids for any gene to be incorporated into the virus. Downstream purification steps were simplified by including N-terminal peptide tags (His, Strep, and Flag) in the generic plasmids.
View Article and Find Full Text PDFAs an initial step in the development of a second-generation smallpox vaccine derived from the Lister strain, to be prepared for a variola virus threat, diversity of the traditional vaccine was examined by characterizing a series of ten viral clones. In vitro and in vivo phenotypic studies showed that the biological behavior of the clones diverged from each other and in most cases diverged from the vaccinia virus (VACV) Lister parental population. Taken together, these results demonstrate the heterogeneity of the viral population within the smallpox vaccine and highlight the difficulty in choosing one clone which would meet the current requirements for a safe and effective vaccine candidate.
View Article and Find Full Text PDFVaccinia virus is a structurally complex virus that multiplies in the cell cytoplasm. The assembly of Vaccinia virus particles and their egress from infected cells exploit cellular pathways. Most notably, intracellular mature viral particles are enwrapped by Golgi-derived or endosomal vesicles.
View Article and Find Full Text PDFThis study assessed three non-replicating smallpox vaccine candidates (modified vaccinia Ankara (MVA), NYVAC and HR) for their immunogenicity and ability to protect mice against an intranasal cowpox virus challenge and compared them with the traditional replicating vaccine. A single immunisation with the non-replicating vaccines induced a complete protection from death at short-term, but was not fully protective when mice were challenged 150 days post-vaccination with protection correlated with the specific neutralizing antibodies and CD4(+) T-cells responses. Prime-boost vaccination enabled effective long-term protection from death for mice vaccinated with MVA, but protection from disease and CD4(+) T-cell level were lower than the ones induced by the traditional vaccine over the long-term period.
View Article and Find Full Text PDFIt is now difficult to manufacture the first-generation smallpox vaccine, as the process could not comply with current safety and manufacturing regulations. In this study, a candidate non-clonal second-generation smallpox vaccine developed by Sanofi-Pasteur from the Lister strain has been assessed using a cowpox virus challenge in mice. We have observed similar safety, immunogenicity and protection (from disease and death) after a short or long interval following vaccination, as well as similar virus clearance post-challenge, with the second-generation smallpox vaccine candidate as compared to the traditional vaccine used as a benchmark.
View Article and Find Full Text PDFVaccinia virus vectors are attractive tools to direct high level protein synthesis in mammalian cells. In one of the most efficient strategies developed so far, the gene to be expressed is positioned downstream of a bacteriophage T7 promoter within the vaccinia genome and transcribed by the T7 RNA polymerase, also encoded by the vaccinia virus genome. Tight regulation of transcription and efficient translation are ensured by control elements of the Escherichia coli lactose operon and the encephalomyocarditis virus leader sequence, respectively.
View Article and Find Full Text PDFSince 1980 there has been global eradication of smallpox due to the success of the vaccination programme using vaccinia virus (VACV). During the eradication period, distinct VACV strains circulated, the Lister strain being the most commonly employed in Europe. Analysis of the safety of smallpox vaccines has suggested that they display significant heterogeneity.
View Article and Find Full Text PDFThe intranasal infection of mice with cowpox virus (CPXV) has been evaluated as a model for smallpox infection in man. Administration of a lethal dose of CPXV allowed time for development of T-cell responses but antibodies could not be detected before death occurred. In contrast, infection with a sublethal dose was associated with an early T-cell response followed by neutralising antibodies which correlated with virus clearance.
View Article and Find Full Text PDFHost restriction of vaccinia virus has been previously described in CHO and RK13 cells in which a cowpox virus CP77 gene rescues vaccinia virus growth at the viral protein translation level. Here we investigate the restrictive stage of vaccinia virus in HeLa cells using a vaccinia mutant virus (VV-hr) that contains a deletion of 18-kb genome sequences resulting in no growth in HeLa cells. Insertion of CP77 gene into VV-hr generated a recombinant virus (VV-36hr) that multiplied well in HeLa cells.
View Article and Find Full Text PDFModified vaccinia virus Ankara (MVA) is a highly attenuated strain known to be an effective vaccine vector. Here it is demonstrated that MVA, unlike standard vaccinia virus (VACV) strains, activates monocyte-derived human dendritic cells (DCs) as testified by an increase in surface co-stimulatory molecules and the secretion of pro-inflammatory cytokines. Inhibition of virus gene expression by subjecting MVA to UV light or heat treatment did not alter its ability to activate DCs.
View Article and Find Full Text PDFThe decision to stop smallpox vaccination and the loss of specific immunity in a large proportion of the population could jeopardise world health due to the possibility of a natural or provoked re-emergence of smallpox. Therefore, it is mandatory to improve the current capability to prevent or treat such infections. The DNA repair protein uracil-DNA glycosylase (UNG) is one of the viral enzymes important for poxvirus pathogenesis.
View Article and Find Full Text PDFPriming of CTL by means of heat shock proteins (hsp) is dependent on antigen-presenting cells (APC), which present the hsp-associated peptides, via their cell surface MHC class I molecules, toCD8(+) T cells. It has not yet been established how human (hu) hsp70 interacts with the major (hu)APC, the dendritic cells (DC). Here we show that (hu)hsp70 is specifically internalized intoCD14(-), Toll-like receptor 4(-) monocyte-derived (hu)DC by receptor-mediated endocytosis.
View Article and Find Full Text PDF