Density functional theory (DFT) calculations at the B3LYP/6-311+G(d,p) level show that 4,6-di(pyridin-2-yl)cyclohexane-1,3-dione is a labile compound. On the other hand, its dienolimine tautomer (4,6-di(pyridin-2-yl)cyclohaxa-1,3-diene-1,3-diol) seems stable enough to be present in vacuum. Alternatively the equilibriated species are (i) dienolimine and enolimine-enaminone ((6Z)-3-hydroxy-6-(pyridin-2(1H)-ylidene)-4-(pyridine-2-yl)cyclohex-3-enone) or (ii) dienolimine, enolimine-enaminone and dienaminone ((4Z,6Z)-4,6-di(pyridin-2(1H)-ylidene)cyclohexane-1,3-dione).
View Article and Find Full Text PDFThe 2-[1H]-pyridone/2-hydroxypyridine tautomeric pair and its 6-substituted complexes have been studied with the use of DFT(M05) method. The intermolecular interaction energy has been calculated and discussed in the light of secondary interaction concept. The attractive secondary interactions of O/NH and O/OH type and OH/NH and OH/OH repulsions have been analyzed in terms of stabilizing or destabilizing influence on intermolecular behavior.
View Article and Find Full Text PDFIntermolecular hydrogen bonds between 2,6-bis(acylamino)pyridines and dipyridin-2-ylamine as well as 4,4-dimethylpiperidine-2,6-dione are responsible for relatively strong interactions between these species. Association has been found to be significantly affected by the size of acyl substituent (chemical shift of the NH proton was used as the main probe in determination of the association constants). Calculations at the DFT level of theory are in line with the experimentally observed results.
View Article and Find Full Text PDFAggregation of 2-acylaminopyridines and their 6-methyl derivatives in chloroform solution was studied by (1)H, (13)C, and (15)N NMR spectroscopies. The results were compared with (13)C and (15)N CPMAS NMR and IR spectral as well as with X-ray structural data. Intermolecular interactions in solution and in solid state were found to have a similar nature.
View Article and Find Full Text PDF