Major challenges to chimeric antigen receptor (CAR) T cell therapies include uncontrolled immune activity, off-tumor toxicities and tumor heterogeneity. To overcome these challenges, we engineered CARs directed against small molecules. By conjugating the same small molecule to distinct tumor-targeting antibodies, we show that small molecule specific-CAR T cells can be redirected to different tumor antigens.
View Article and Find Full Text PDFLong non-coding RNAs (lncRNAs) regulate critical cellular processes and their dysregulation contributes to multiple diseases. Although only a few lncRNAs have defined mechanisms, many of these characterized lncRNAs interact with transcription factors to regulate gene expression, suggesting a common mechanism of action. Identifying RNA-bound transcription factors is especially challenging due to inefficient RNA immunoprecipitation and low abundance of many transcription factors.
View Article and Find Full Text PDFTranscriptional repression of ubiquitin B (UBB) is a cancer-subtype-specific alteration that occurs in a substantial population of patients with cancers of the female reproductive tract. UBB is 1 of 2 genes encoding for ubiquitin as a polyprotein consisting of multiple copies of ubiquitin monomers. Silencing of UBB reduces cellular UBB levels and results in an exquisite dependence on ubiquitin C (UBC), the second polyubiquitin gene.
View Article and Find Full Text PDFLong non-coding RNAs (lncRNAs) have been implicated in numerous physiological processes and diseases, most notably cancers. However, little is known about the mechanism of many functional lncRNAs. We identified an abundantly expressed lncRNA associated with decreased melanoma patient survival.
View Article and Find Full Text PDFExtracellular vesicles (ECVs) are nano-sized vesicles released by all cells in vitro as well as in vivo. Their role has been implicated mainly in cell-cell communication, but also in disease biomarkers and more recently in gene delivery. They represent a snapshot of the cell status at the moment of release and carry bioreactive macromolecules such as nucleic acids, proteins, and lipids.
View Article and Find Full Text PDFBackground: Circulating tumor cells (CTCs) likely derive from clones in the primary tumor, suggesting that they can be used for all biological tests applying to the primary cells.
Materials And Methods: The ScreenCell® devices are single-use and low-cost innovative devices that use a filter to isolate and sort tumor cells by size.
Results: The ScreenCell® Cyto device is able to isolate rare, fixed, tumor cells, with a high recovery rate.
Purpose: Tumors from 50% of epidermal growth factor receptor (EGFR) mutant non-small cell lung cancer patients that develop resistance to gefitinib or erlotinib will contain a secondary EGFR T790M mutation. As most patients do not undergo repeated tumor biopsies we evaluated whether EGFR T790M could be detected using plasma DNA.
Experimental Design: DNA from plasma of 54 patients with known clinical response to gefitinib or erlotinib was extracted and used to detect both EGFR-activating and EGFR T790M mutations.
The rapidly growing understanding of human genetic pathways, including those that mediate cancer biology and drug response, leads to an increasing need for extensive and reliable mutation screening on a population or on a single patient basis. Here we describe s-RT-MELT, a novel technology that enables highly expanded enzymatic mutation scanning in human samples for germline or low-level somatic mutations, or for SNP discovery. GC-clamp-containing PCR products from interrogated and wild-type samples are hybridized to generate mismatches at the positions of mutations over one or multiple sequences in-parallel.
View Article and Find Full Text PDFPurpose: Mutations in the epidermal growth factor receptor (EGFR) are associated with clinical and radiographic responses to EGFR tyrosine kinase inhibitors gefitinib and erlotinib. Currently available methods of EGFR mutation detection rely on direct DNA sequencing, which requires isolation of DNA from a relatively pure population of tumor cells, cannot be done on small diagnostic specimens, and lack sensitivity. Here we describe the use of a sensitive screening method that overcomes many of these limitations.
View Article and Find Full Text PDF