Producing soft magnetic alloys by additive manufacturing has the potential to overcome cracking and brittle fracture issues associated with conventional thermomechanical processing. Fe-Co alloys exhibit high magnetic saturation but low ductility that makes them difficult to process by commercial methods. Ni-Fe alloys have good ductility and high permeability in comparison to Fe-Co, but they suffer from low magnetic saturation.
View Article and Find Full Text PDFA core-shell approach that utilizes a high-surface-area conducting core and an outer semiconductor shell is exploited here to prepare p-type dye-sensitized solar energy cells that operate with a minimal applied bias. Photocathodes were prepared by coating thin films of nanocrystalline indium tin oxide with a 0.8 nm AlO seeding layer, followed by the chemical growth of nonstoichiometric strontium titanate.
View Article and Find Full Text PDFDeformation of flexible vesicles suspended in a fluid medium due to an applied electric field can provide valuable insight into deformation dynamics at a very small scale. In an electric field, the response of the vesicle membrane is strongly influenced by the conductivity of surrounding fluid, vesicle size and shape, and the magnitude of applied field. We studied the electrodeformation of vesicles immersed in a fluid media under a DC electric field.
View Article and Find Full Text PDFDespite the utility of gastropod models for the study of evolutionary processes of great generality and importance, their effective population size has rarely been estimated in the field. Here, we report allele frequency variance at three allozyme-encoding loci monitored over 7 years in a population of the invasive freshwater pulmonate snail (Draparnaud 1805), estimating effective population size with both single-sample and two-sample approaches. Estimated declined from effectively infinite in 2009 to approximately 40-50 in 2012 and then rose back to infinity in 2015, corresponding to a striking fluctuation in the apparent census size of the population.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2017
Visible-light-driven water splitting was investigated in a dye sensitized photoelectrosynthesis cell (DSPEC) based on a photoanode with a phosphonic acid-derivatized donor-π-acceptor (D-π-A) organic chromophore, 1, and the water oxidation catalyst [Ru(bda)(4-O(CH)P(OH)-pyr)], 2, (pyr = pyridine; bda = 2,2'-bipyridine-6,6'-dicarboxylate). The photoanode was prepared by using a layering strategy beginning with the organic dye anchored to an FTO|core/shell electrode, atomic layer deposition (ALD) of a thin layer (<1 nm) of TiO, and catalyst binding through phosphonate linkage to the TiO layer. Device performance was evaluated by photocurrent measurements for core/shell photoanodes, with either SnO or nanoITO core materials, in acetate-buffered, aqueous solutions at pH 4.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2017
The hole-injection and recombination photophysics for NiO sensitized with RuP ([Ru(bpy)(4,4'-(POH)-bpy)]) are explored. Ultrafast transient absorption (TA) measurements performed with an external electrochemical bias reveal the efficiency for productive hole-injection, that is, quenching of the dye excited state that results in a detectable charge-separated electron-hole pair, is linearly dependent on the electronic occupation of intragap states in the NiO film. Population of these states via a negative applied potential increases the efficiency from 0% to 100%.
View Article and Find Full Text PDFStudies investigating the feasibility of new, or improved, biotechnologies, such as wastewater treatment digesters, inevitably start with laboratory-scale trials. However, it is rarely determined whether laboratory-scale results reflect full-scale performance or microbial ecology. The Expanded Granular Sludge Bed (EGSB) bioreactor, which is a high-rate anaerobic digester configuration, was used as a model to address that knowledge gap in this study.
View Article and Find Full Text PDFThe use of bulk metallic glasses (BMGs) as the flexspline in strain wave gears (SWGs), also known as harmonic drives, is presented. SWGs are unique, ultra-precision gearboxes that function through the elastic flexing of a thin-walled cup, called a flexspline. The current research demonstrates that BMGs can be cast at extremely low cost relative to machining and can be implemented into SWGs as an alternative to steel.
View Article and Find Full Text PDFUltrafast energy and electron transfer (EnT and ET, respectively) are characterized in a light-harvesting assembly based on a π-conjugated polymer (poly(fluorene)) functionalized with broadly absorbing pendant organic isoindigo (iI) chromophores using a combination of femtosecond transient absorption spectroscopy and large-scale computer simulation. Photoexcitation of the π-conjugated polymer leads to near-unity quenching of the excitation through a combination of EnT and ET to the iI pendants. The excited pendants formed by EnT rapidly relax within 30 ps, whereas recombination of the charge-separated state formed following ET occurs within 1200 ps.
View Article and Find Full Text PDFSensitized SrTiO3 films were evaluated as potential photoanodes for dye-sensitized photoelectrosynthesis cells (DSPECs). The SrTiO3 films were grown via pulsed laser deposition (PLD) on a transparent conducting oxide (fluorine-doped tin oxide, FTO) substrate, annealed, and then loaded with zinc(II) 5,10,15-tris(mesityl)-20-[(dihydroxyphosphoryl)phenyl] porphyrin (MPZnP). When paired with a platinum wire counter electrode and an Ag/AgCl reference electrode these sensitized films exhibited photocurrent densities on the order of 350 nA/cm(2) under 0 V applied bias conditions versus a normal hydrogen electrode (NHE) and 75 mW/cm(2) illumination at a wavelength of 445 nm.
View Article and Find Full Text PDFInterfacial electron transfer at titanium dioxide (TiO2) is investigated for a series of surface bound ruthenium-polypyridyl dyes whose metal-to-ligand charge-transfer state (MLCT) energetics are tuned through chemical modification. The 12 complexes are of the form Ru(II)(bpy-A)(L)2(2+), where bpy-A is a bipyridine ligand functionalized with phosphonate groups for surface attachment to TiO2. Functionalization of ancillary bipyridine ligands (L) enables the potential of the excited state Ru(III/)* couple, E(+/)*, in 0.
View Article and Find Full Text PDFSinglet fission, in which an initially excited singlet state spontaneously splits into a pair of triplet excitons, is a process that can potentially boost the efficiency of solar energy conversion. The separate electronic bands in organic semiconductors make them especially useful for dividing a high-energy singlet exciton into a pair of lower-energy triplet excitons. Recent experiments illustrate the role of spin coherence in fission, while kinetic models are used to describe how triplet and singlet states interact on longer time scales.
View Article and Find Full Text PDFThe cosmopolitan freshwater pulmonate snail Physa acuta hybridizes readily with Physa carolinae in the laboratory, although their F1 progeny are sterile. The two species differ qualitatively in shell shape, the former bearing a more globose shell and the latter more fusiform. We performed a hybridization experiment, measuring a set of 14 traditional (linear) and landmark-based shell morphological variables on even-aged parents and their offspring from both hybrids and purebred control lines.
View Article and Find Full Text PDFIn recent years, there are significant interests in the manipulation of bipolar Janus particles. In this article, we investigate the transient behavior of the electro-orientation process and particle-particle interaction of ellipsoidal bipolar Janus particles in the presence and absence of a DC electric field. The bipolar particle dynamics is modeled with a body force term in the fluid flow equations based on the Maxwell stress tensor.
View Article and Find Full Text PDFThe production of hydrogen from water with semiconductor photocatalysts can be promoted by adding small amounts of metals to their surfaces. The resulting enhancement in photocatalytic activity is commonly attributed to a fast transfer of the excited electrons generated by photon absorption from the semiconductor to the metal, a step that prevents deexcitation back to the ground electronic state. Here we provide experimental evidence that suggests an alternative pathway that does not involve electron transfer to the metal but requires it to act as a catalyst for the recombination of the hydrogen atoms made via the reduction of protons on the surface of the semiconductor instead.
View Article and Find Full Text PDFThe dynamics of singlet fission (SF) are studied in monoclinic and orthorhombic crystals of 1,6-diphenyl-1,3,5-hexatriene. Picosecond time-resolved fluorescence measurements and the presence of a strong magnetic field effect indicate that up to 90% of the initially excited singlets undergo SF in both forms. The initial SF and subsequent triplet pair dissociation rates are found to be more rapid in the monoclinic crystal by factors of 1.
View Article and Find Full Text PDFJ Colloid Interface Sci
March 2013
Electric field induced particle-particle interactions and assembly are of great interest due to their useful applications in micro devices. The behavior of particles becomes more complex if multiple particles interact with each other at the same time. In this paper, we present a numerical study of two dimensional DC dielectrophoresis based particle-particle interactions and assembly for multiple particles using a hybrid immersed interface-immersed boundary method.
View Article and Find Full Text PDFThe spectroscopic and photocatalytic properties of a series of Au@TiO(2) core-shell nanostructures are characterized. The crystallinity of the TiO(2) shells was varied by changing the etching and calcination conditions. Measurements of the photoluminescence, transient absorption, and H(2) production rate permit us to look for correlations between the spectroscopic and catalytic behaviors.
View Article and Find Full Text PDFPrevious studies of solid-state tetracyanobenzene-based donor-acceptor complexes showed that these materials were highly susceptible to both laser and mechanical damage that complicated the analysis of their electron-transfer kinetics. In this paper, we characterize the optical properties of a pyrene/tetracyanoquinodimethane charge-transfer crystal that is much more robust than the tetracyanobenzene compounds. This donor-acceptor complex has a charge-transfer absorption that extends into the near-infrared, rendering the crystal black.
View Article and Find Full Text PDFLand use change is one of the most commonly cited contributing factors to infectious disease emergence, yet the mechanisms responsible for such changes and the spatial scales at which they operate are rarely identified. The distributions of parasites with complex life cycles depend on interactions between multiple host species, suggesting the net effects of land use on infection patterns may be difficult to predict a priori. Here, we used an information-theoretic approach to evaluate the importance of land use and spatial scale (local, watershed, and regional) in determining the presence and abundance of multi-host trematodes of amphibians.
View Article and Find Full Text PDFBackground: The cosmopolitan freshwater snail Physa acuta has recently found widespread use as a model organism for the study of mating systems and reproductive allocation. Mitochondrial DNA phylogenies suggest that Physa carolinae, recently described from the American southeast, is a sister species of P. acuta.
View Article and Find Full Text PDF