Publications by authors named "Robert DeJournett"

Polynuclear platinum compounds are more effective at killing glioblastoma cells than cisplatin, work by a different mechanism, and typically do not induce high levels of apoptosis at early time points after exposure. Here, we tested the hypothesis that combining BBR3610, the most potent polynuclear platinum, with a phosphoinositide-3-kinase (PI3K) inhibitor would promote apoptosis and enhance the impact on glioblastoma cells. The PI3K pathway is commonly activated in glioblastoma and promotes tumor cell survival, suggesting that its inhibition would make cells more sensitive to cytotoxic agents.

View Article and Find Full Text PDF

The mammalian adaptor protein Alix [ALG-2 (apoptosis-linked-gene-2 product)-interacting protein X] belongs to a conserved family of proteins that have in common an N-terminal Bro1 domain and a C-terminal PRD (proline-rich domain), both of which mediate partner protein interactions. Following our previous finding that Xp95, the Xenopus orthologue of Alix, undergoes a phosphorylation-dependent gel mobility shift during progesteroneinduced oocyte meiotic maturation, we explored potential regulation of Xp95/Alix by protein phosphorylation in hormone-induced cell cycle re-entry or M-phase induction. By MALDI-TOF (matrix-assisted laser-desorption ionization-time-of-flight) MS analyses and gel mobility-shift assays, Xp95 is phosphorylated at multiple sites within the N-terminal half of the PRD during Xenopus oocyte maturation, and a similar region in Alix is phosphorylated in mitotically arrested but not serum-stimulated mammalian cells.

View Article and Find Full Text PDF

Susceptibility to pulmonary fibrosis following environmental insults or cytotoxic cancer therapies has a genetic component. In mouse strains differing in susceptibility to bleomycin-induced lung fibrosis, we show highly significant linkage to only two loci. The first locus on chromosome 17 in the major histocompatibility complex (MHC), LOD = 17.

View Article and Find Full Text PDF

Susceptibility to radiation-induced pulmonary fibrosis is a heritable trait in mice. In a prior study of C57BL/6J (susceptible), C3Hf/Kam (resistant), and F1 and F2 mice derived from these strains, we estimated that approximately 38% of the measured phenotypic variation could be attributed to effects from a few genetic factors. In addition, we identified one genetic factor on chromosome 17 in the MHC region.

View Article and Find Full Text PDF