Studies incorporating both toxicokinetic and dynamic factors provide insight into chemical sensitivity differences across the life span. Tissue (brain, plasma, liver) levels of the N-methyl carbamate carbaryl, and its metabolite 1-naphthol, were determined and related to brain and RBC cholinesterase (ChE) inhibition in the same animals. Dose-response (3, 7.
View Article and Find Full Text PDFPerfluorooctanoic acid (PFOA) is an environmental contaminant that causes adverse developmental effects in laboratory animals. To investigate the low-dose effects of PFOA on offspring, timed-pregnant CD-1 mice were gavage dosed with PFOA for all or half of gestation. In the full-gestation study, mice were administered 0, 0.
View Article and Find Full Text PDFPerfluorononanoic acid (PFNA) is a fluorinated organic chemical found at low levels in the environment, but is detectable in humans and wildlife. The present study compared the pharmacokinetic properties of PFNA in two laboratory rodent species. Male and female Sprague-Dawley rats were given a single dose of PFNA by oral gavage at 1, 3, or 10mg/kg, and blood was collected from the tail vein at 1, 2, 3, 4, 7, 16, 21, 28, 35, 42 and 50 days after treatment.
View Article and Find Full Text PDFPerfluorooctane sulfonate (PFOS) is a perfluoroalkyl acid (PFAA) and a persistent environmental contaminant found in the tissues of humans and wildlife. Although blood levels of PFOS have begun to decline, health concerns remain because of the long half-life of PFOS in humans. Like other PFAAs, such as, perfluorooctanoic acid (PFOA), PFOS is an activator of peroxisome proliferator-activated receptor-alpha (PPARα) and exhibits hepatocarcinogenic potential in rodents.
View Article and Find Full Text PDFPerfluorononanoic acid (PFNA) is one of the perfluoroalkyl acids found in the environment and in tissues of humans and wildlife. Prenatal exposure to PFNA negatively impacts survival and development of mice and activates the mouse and human peroxisome proliferator-activated receptor-alpha (PPARα). In the current study, we used PPARα knockout (KO) and 129S1/SvlmJ wild-type (WT) mice to investigate the role of PPARα in mediating PFNA-induced in vivo effects.
View Article and Find Full Text PDFPerfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are environmental contaminants found in the tissues of humans and wildlife. They are activators of peroxisome proliferator-activated receptor-alpha (PPAR alpha) and exhibit hepatocarcinogenic potential in rats. PFOS and PFOA are also developmental toxicants in rodents and PFOS has been shown to induce pulmonary deficits in rat offspring.
View Article and Find Full Text PDFPerfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are members of a family of perfluorinated compounds. Both are environmentally persistent and found in the serum of wildlife and humans. PFOS and PFOA are developmentally toxic in laboratory rodents.
View Article and Find Full Text PDFPerfluorobutyrate (PFBA) is a perfluoroalkyl acid (PFAA) found in the environment. Previous studies have indicated developmental toxicity of PFAAs (perfluorooctane sulfonate [PFOS] and perfluorooctanoate [PFOA]); the current study examines that of PFBA. PFBA/NH4(+) was given to timed-pregnant CD-1 mice by oral gavage daily from gestational day (GD) 1 to 17 at 35, 175, or 350 mg/kg (chosen to approximate the developmentally toxic doses of PFOA); controls received water.
View Article and Find Full Text PDFPerfluorooctanoic acid (PFOA) is a chemical used in the production of fluoropolymers. Its persistence in the environment and presence in humans and wildlife has raised health concerns. Liver tumor induction by PFOA is thought to be mediated in rodents by PPAR-alpha.
View Article and Find Full Text PDFHealth concerns have been raised because perfluorooctanoic acid (PFOA) is commonly found in the environment and can be detected in humans. In rodents, PFOA is a carcinogen and a developmental toxicant. PFOA is a peroxisome proliferator-activated receptor alpha (PPARalpha) activator; however, PFOA is capable of inducing heptomegaly in the PPARalpha-null mouse.
View Article and Find Full Text PDFPerfluorooctanoic acid (PFOA) is a stable perfluoroalkyl acid used to synthesize fluoropolymers during the manufacture of a wide variety of products. Concerns have been raised over the potential health effects of PFOA because it is persistent in the environment and can be detected in blood and other tissues of many animal species, including humans. PFOA has also been shown to induce growth deficits and mortality in murine neonates.
View Article and Find Full Text PDFPerfluorooctanoic acid (PFOA) is a member of a family of perfluorinated chemicals that have a variety of applications. PFOA persists in the environment and is found in wildlife and humans. In mice, PFOA is developmentally toxic producing mortality, delayed eye opening, growth deficits, and altered pubertal maturation.
View Article and Find Full Text PDFPerfluorooctanoic acid (PFOA), with diverse and widespread commercial and industrial applications, has been detected in human and wildlife sera. Previous mouse studies linked prenatal PFOA exposure to decreased neonatal body weights (BWs) and survival in a dose-dependent manner. To determine whether effects were linked to gestational time of exposure or to subsequent lactational changes, timed-pregnant CD-1 mice were orally dosed with 5 mg PFOA/kg on gestation days (GD) 1-17, 8-17, 12-17, or vehicle on GD 1-17.
View Article and Find Full Text PDF