Comp Biochem Physiol A Mol Integr Physiol
March 2019
Crustacean growth is characterized by molting, whereby the old exoskeleton is shed and replaced by a new and larger version. The cellular events that lead to molting are driven by steroid hormones (ecdysteroids) secreted by paired endocrine glands (Y-organs). Between molts, ecdysteroid production is suppressed by a polypeptide molt-inhibiting hormone (MIH) released from neurosecretory cells in the eyestalks.
View Article and Find Full Text PDFObservations of cuticular structures mineralized with silica within the Crustacea have been limited to the opal teeth of copepods, mandibles of amphipods, and recently the teeth of the gastric mill in the blue crab Callinectes sapidus. Copepod teeth are deposited during premolt, with sequential elaboration of organic materials followed by secretion of silica into the tooth mold. The timing of mineralization is in stark contrast to that of the general integument of crustaceans in which calcification is completely restricted to the postmolt period.
View Article and Find Full Text PDFThis study examined the mesocardiac and urocardiac ossicles in the gastric mill of the blue crab to describe its structure, mineralization, and dynamics throughout the molt cycle, and to assess its possible utility in age determination. Morphologically, the mineralized ossicles are similar to the calcified dorsal carapace having a lamellate structure comprised of sheets of chitin/protein fibrils. Staining with acridine orange showed the same arrangement of an epicuticle, exocuticle, and endocuticle.
View Article and Find Full Text PDFExisting data indicate that a stage-specific increase in intracellular free Ca(2+) stimulates ecdysteroid production by crustacean molting glands (Y-organs). The concentration of Ca(2+) in cytosol is controlled mainly by proteins intrinsic to the plasma membrane and to the membranes of organelles. Several families of proteins are involved, including Ca(2+) channels, Ca(2+) pumps (ATPases), and Ca(2+) exchangers.
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
September 2012
Secretion of ecdysteroid molting hormones by crustacean Y-organs is suppressed by molt-inhibiting hormone (MIH). The suppressive effect of MIH on ecdysteroidogenesis is mediated by one or more cyclic nucleotide second messengers. In addition, existing data indicate that ecdysteroidogenesis is positively regulated (stimulated) by intracellular Ca(++).
View Article and Find Full Text PDFCrustacean hyperglycemic hormone (CHH) is a polypeptide neurohormone involved in regulation of multiple physiological processes. We report here the cloning from thoracic ganglia of the blue crab (Callinectes sapidus) a cDNA (CsCHH-2) encoding a putative CHH isoform (CsCHH-2). CsCHH-2 is structurally similar to a putative preproCHH (CsCHH-1) previously cloned from eyestalk ganglia of C.
View Article and Find Full Text PDFCrustacean Y-organs synthesize ecdysteroid molting hormones. Synthesis of ecdysteroids by Y-organs is negatively regulated by a polypeptide neurohormone, molt-inhibiting hormone (MIH). Our laboratory has recently cloned from Y-organs of the blue crab (Callinectes sapidus) a cDNA (CsGC-YO1) encoding a putative receptor guanylyl cyclase (CsGC-YO1).
View Article and Find Full Text PDFFormation of a circular hole 8-10 mm in diameter in the calcified layers of the carapace from crabs in stage C of the molt cycle stimulates the tissue under and adjacent to the injury to deposit a unique calcified cuticular material below the intact membranous layer. Deposition was followed for 69 days using light microscopic histology, histochemistry, and scanning electron microscopy. Quantitative analyses of CaCO were conducted using atomic absorption spectrophotometry and Gran titration.
View Article and Find Full Text PDF