Prader-Willi syndrome (PWS) is a multisystem disorder with neurobehavioral, metabolic, and hormonal phenotypes, caused by loss of expression of a paternally-expressed imprinted gene cluster. Prior evidence from a PWS mouse model identified abnormal pancreatic islet development with retention of aged insulin and deficient insulin secretion. To determine the collective roles of PWS genes in β-cell biology, we used genome-editing to generate isogenic, clonal INS-1 insulinoma lines having 3.
View Article and Find Full Text PDFGuanylate cyclase 2C (GC-C), encoded by the GUCY2C gene, is implicated in hereditary early onset chronic diarrhea. Several families with chronic diarrhea symptoms have been identified with autosomal dominant, gain-of-function mutations in GUCY2C. We have identified a Mennonite patient with a novel GUCY2C variant (c.
View Article and Find Full Text PDFPhenylalanine hydroxylase-deficient (PAH-deficient) phenylketonuria (PKU) results in systemic hyperphenylalaninemia, leading to neurotoxicity with severe developmental disabilities. Dietary phenylalanine (Phe) restriction prevents the most deleterious effects of hyperphenylalaninemia, but adherence to diet is poor in adult and adolescent patients, resulting in characteristic neurobehavioral phenotypes. Thus, an urgent need exists for new treatments.
View Article and Find Full Text PDFSci Rep
August 2020
Prader-Willi (PWS) and Angelman (AS) syndromes are two clinically distinct imprinted disorders characterized by genetic abnormalities at 15q11-q13. Early diagnosis of both syndromes provides improved treatment and accurate genetic counseling. Whole blood (WB) is the most common DNA source of many methodologies to detect PWS and AS, however, the need of WB makes a massive screening difficult in newborns due to economic and technical limitations.
View Article and Find Full Text PDFWe identified individuals with variations in ACTL6B, a component of the chromatin remodeling machinery including the BAF complex. Ten individuals harbored bi-allelic mutations and presented with global developmental delay, epileptic encephalopathy, and spasticity, and ten individuals with de novo heterozygous mutations displayed intellectual disability, ambulation deficits, severe language impairment, hypotonia, Rett-like stereotypies, and minor facial dysmorphisms (wide mouth, diastema, bulbous nose). Nine of these ten unrelated individuals had the identical de novo c.
View Article and Find Full Text PDFAcyl-CoA dehydrogenase 9 (ACAD9) is an assembly factor for mitochondrial respiratory chain Complex I (CI), and ACAD9 mutations are recognized as a frequent cause of CI deficiency. ACAD9 also retains enzyme ACAD activity for long-chain fatty acids in vitro, but the biological relevance of this function remains controversial partly because of the tissue specificity of ACAD9 expression: high in liver and neurons and minimal in skin fibroblasts. In this study, we hypothesized that this enzymatic ACAD activity is required for full fatty acid oxidation capacity in cells expressing high levels of ACAD9 and that loss of this function is important in determining phenotype in ACAD9-deficient patients.
View Article and Find Full Text PDFPrader-Willi syndrome (PWS) occurs in about 1 in 15,000 individuals and is a contiguous gene disorder causing developmental disability, hyperphagia usually with obesity, and behavioral problems, including an increased incidence of psychiatric illness. The genomic imprinting that regulates allele-specific expression of PWS candidate genes, the fact that multiple genes are typically inactivated, and the presence of many genes that produce functional RNAs rather than proteins has complicated the identification of the underlying genetic pathophysiology of PWS. Over 30 genetically modified mouse strains that have been developed and characterized have been instrumental in elucidating the genetic and epigenetic mechanisms for the regulation of PWS genes and in discovering their physiological functions.
View Article and Find Full Text PDFThe growth of a malignant tumor beyond a certain, limited size requires that it first develop an independent blood supply. In addition to providing metabolic support, this neovasculature also allows tumor cells to access the systemic circulation, thus facilitating metastatic dissemination. The neovasculature may originate either from normal blood vessels in close physical proximity to the tumor and/or from the recruitment of bone marrow-derived endothelial cell (EC) precursors.
View Article and Find Full Text PDFHereditary spastic paraplegias (HSPs) comprise a group of neurodegenerative disorders that are characterized by progressive spasticity of the lower extremities, due to axonal degeneration in the corticospinal motor tracts. HSPs are genetically heterogeneous and show autosomal dominant inheritance in ∼70-80% of cases, with additional cases being recessive or X-linked. The most common type of HSP is SPG4 with mutations in the SPAST gene, encoding spastin, which occurs in 40% of dominantly inherited cases and in ∼10% of sporadic cases.
View Article and Find Full Text PDFPrader-Willi syndrome (PWS) is a multisystem disorder caused by genetic loss of function of a cluster of imprinted, paternally expressed genes. Neonatal failure to thrive in PWS is followed by childhood-onset hyperphagia and obesity among other endocrine and behavioral abnormalities. PWS is typically assumed to be caused by an unknown hypothalamic-pituitary dysfunction, but the underlying pathogenesis remains unknown.
View Article and Find Full Text PDFThe loss of HBII-52 and related C/D box small nucleolar RNA (snoRNA) expression units have been implicated as a cause for the Prader-Willi syndrome (PWS). We recently found that the C/D box snoRNA HBII-52 changes the alternative splicing of the serotonin receptor 2C pre-mRNA, which is different from the traditional C/D box snoRNA function in non-mRNA methylation. Using bioinformatic predictions and experimental verification, we identified five pre-mRNAs (DPM2, TAF1, RALGPS1, PBRM1 and CRHR1) containing alternative exons that are regulated by MBII-52, the mouse homolog of HBII-52.
View Article and Find Full Text PDFIntrauterine growth retardation (IUGR) has been linked to the onset of diseases in adulthood, including type 2 diabetes, and has been proposed to result from altered gene regulation patterns due to epigenetic modifications of developmental genes. To determine whether epigenetic modifications may play a role in the development of adult diabetes following IUGR, we used a rodent model of IUGR that expresses lower levels of Pdx1, a pancreatic and duodenal homeobox 1 transcription factor critical for beta cell function and development, which develops diabetes in adulthood. We found that expression of Pdx1 was permanently reduced in IUGR beta cells and underwent epigenetic modifications throughout development.
View Article and Find Full Text PDFWe report a high-quality draft of the genome sequence of the grey, short-tailed opossum (Monodelphis domestica). As the first metatherian ('marsupial') species to be sequenced, the opossum provides a unique perspective on the organization and evolution of mammalian genomes. Distinctive features of the opossum chromosomes provide support for recent theories about genome evolution and function, including a strong influence of biased gene conversion on nucleotide sequence composition, and a relationship between chromosomal characteristics and X chromosome inactivation.
View Article and Find Full Text PDFGenomic imprinting, representing parent-specific expression of alleles at a locus, raises many questions about how--and especially why--epigenetic silencing of mammalian genes evolved. We present the first in-depth study of how a human imprinted domain evolved, analyzing a domain containing several imprinted genes that are involved in human disease. Using comparisons of orthologous genes in humans, marsupials, and the platypus, we discovered that the Prader-Willi/Angelman syndrome region on human Chromosome 15q was assembled only recently (105-180 million years ago).
View Article and Find Full Text PDFA recently promoted genome evolution model posits that mammalian pseudogenes can regulate their founding source genes, and it thereby ascribes an important function to "junk DNA." This model arose from analysis of a serendipitous mouse mutant in which a transgene insertion/deletion caused severe polycystic kidney disease and osteogenesis imperfecta with approximately 80% perinatal lethality, when inherited paternally [Hirotsune, S., et al.
View Article and Find Full Text PDFFMR1 encodes an RNA-binding protein whose absence results in fragile X mental retardation. In most patients, the FMR1 gene is cytosine-methylated and transcriptionally inactive. NRF-1 and Sp1 are known to bind and stimulate the active, but not the methylated/silenced, FMR1 promoter.
View Article and Find Full Text PDFBackground: Prader-Willi and Angelman syndrome (PWS and AS) patients typically have an approximately 5 Mb deletion of human chromosome 15q11-q13, of opposite parental origin. A mouse model of PWS and AS has a transgenic insertion-deletion (TgPWS/TgAS) of chromosome 7B/C subsequent to paternal or maternal inheritance, respectively. In this study, we define the deletion endpoints and examine the impact on expression of flanking genes.
View Article and Find Full Text PDFThe imprinted SNRPN locus is a complex transcriptional unit that encodes the SNURF and SmN polypeptides as well as multiple non-coding RNAs. SNRPN is located within the Prader-Willi and Angelman syndrome (PWS/AS) region that contains multiple imprinted genes, which are coordinately regulated by a bipartite imprinting center (IC). The SNRPN 5' region co-localizes with the PWS-IC and contains two DNase I hypersensitive sites, DHS1 at the SNRPN promoter, and DHS2 within intron 1, exclusively on the paternally inherited chromosome.
View Article and Find Full Text PDFPrader-Willi syndrome (PWS) is a neurobehavioral disorder caused by the lack of paternal expression of imprinted genes in the human chromosome region 15q11-13. Recent studies of rare human translocation patients narrowed the PWS critical genes to a 121-kb region containing PWCR1/HBII-85 and HBII-438 snoRNA genes. The existing mouse models of PWS that lack the expression of multiple genes, including Snrpn, Ube3a, and many intronic snoRNA genes, are characterized by 80%-100% neonatal lethality.
View Article and Find Full Text PDFPrader-Willi syndrome (PWS) is a complex neurobehavioral disorder that results from loss of function of 10 clustered, paternally expressed genes in a 1.5-Mb region of chromosome 15q11-q13. Many of the primary PWS region genes appear to have nuclear RNA regulatory functions, suggesting that multiple genetic pathways could be secondarily affected in PWS.
View Article and Find Full Text PDFTo detect potentially imprinted, obesity-related genetic loci, we performed genomewide parent-of-origin linkage analyses under an allele-sharing model for discrete traits and under a family regression model for obesity-related quantitative traits, using a European American sample of 1,297 individuals from 260 families, with 391 microsatellite markers. We also used two smaller, independent samples for replication (a sample of 370 German individuals from 89 families and a sample of 277 African American individuals from 52 families). For discrete-trait analysis, we found evidence for a maternal effect in chromosome region 10p12 across the three samples, with LOD scores of 5.
View Article and Find Full Text PDFPhenotypic analyses of a set of homozygous-lethal deletion mutants at the pink-eyed dilution (p) locus has resulted in the identification of p-linked obesity locus 1 (plo 1), distal to the p locus, as a locus involved in the modulation of body fat and/or affecting lipid metabolism in these mice. The plo 1 region maps to mouse chromosome 7 (MMU 7) between two genes, Gabrb3 and Ube3a, which have been used as anchor points to generate an integrated deletion and physical map of plo 1 that encompasses about 1.2-1.
View Article and Find Full Text PDFFull-length poxvirus N1R/p28 orthologous proteins feature a prominent C-terminal RING zinc-finger motif. The RING moiety is conspicuously mutated in a number of vaccinia virus strains relative to variola virus. This, together with empirical data, suggests that N1R/p28 proteins promote virulence by suppressing apoptosis.
View Article and Find Full Text PDFObesity is a central feature for several congenital syndromes, including Prader-Willi, Angelman, Bardet-Biedl, Cohen, Alström, and Börjeson-Forssman-Lehmann syndromes, and Albright's hereditary osteodystrophy. Although a role for the central nervous system, including the hypothalamus-pituitary axis, has been suggested for the etiology of obesity in these syndromes, the pathophysiologic pathways are as yet not well defined, and in many cases may identify currently unknown mechanisms. Nevertheless, many of the causative genes and unusual mechanisms, including parental imprinting of genes and complex patterns of inheritance, have been identified.
View Article and Find Full Text PDFThe hereditary spastic paraplegias (HSPs) are genetically heterogeneous disorders characterized by progressive lower-extremity weakness and spasticity. The molecular pathogenesis is poorly understood. We report discovery of a dominant negative mutation in the NIPA1 gene in a kindred with autosomal dominant HSP (ADHSP), linked to chromosome 15q11-q13 (SPG6 locus); and precisely the same mutation in an unrelated kindred with ADHSP that was too small for meaningful linkage analysis.
View Article and Find Full Text PDF