A Borrelia miyamotoi gene with partial homology to bipA of relapsing fever spirochetes Borrelia hermsii and Borrelia turicatae was identified by a GenBank basic alignment search analysis. We hypothesized that this gene product may be an immunogenic antigen as described for other relapsing fever Borrelia (RFB) and could serve as a serological marker for B. miyamotoi infections.
View Article and Find Full Text PDFOuter surface protein C (OspC) plays a pivotal role in mediating tick-to-host transmission and infectivity of the Lyme disease spirochete, Borreliella burgdorferi. OspC is a helical-rich homodimer that interacts with tick salivary proteins, as well as components of the mammalian immune system. Several decades ago, it was shown that the OspC-specific monoclonal antibody, B5, was able to passively protect mice from experimental tick-transmitted infection by B.
View Article and Find Full Text PDFBorrelia miyamotoi is a tick-transmitted spirochete that is genetically grouped with relapsing fever Borrelia and possesses multiple archived pseudogenes that encode variable major proteins (Vmps). Vmps are divided into two groups based on molecular size; variable large proteins (Vlps) and variable small proteins (Vsps). Relapsing fever Borrelia undergo Vmp gene conversion at a single expression locus to generate new serotypes by antigenic switching which is the basis for immune evasion that causes relapsing fever in patients.
View Article and Find Full Text PDFThe genome of Borrelia spp. consists of an approximate 1 megabase chromosome and multiple linear and circular plasmids. We previously described a multiplex PCR assay to detect plasmids in the North American Borrelia miyamotoi strains LB-2001 and CT13-2396.
View Article and Find Full Text PDFWe developed a transwell assay to quantify migration of the Lyme disease agent, Borrelia burgdorferi sensu stricto (s.s.), toward Ixodes scapularis salivary gland proteins.
View Article and Find Full Text PDFBorrelia miyamotoi is a tick-borne spirochete of the relapsing fever borrelia group and an emerging pathogen of public health significance. The genomes of relapsing fever borreliae and Lyme disease borreliae consist of multiple linear and circular plasmids in addition to the chromosome. Previous work with B.
View Article and Find Full Text PDFBorrelia miyamotoi is a tick-borne pathogen that causes Borrelia miyamotoi disease (BMD), an emerging infectious disease of increasing public health significance. B. miyamotoi is transmitted by the same tick vector (Ixodes spp.
View Article and Find Full Text PDFSerologic testing is the standard for laboratory diagnosis and confirmation of Lyme disease. Serodiagnostic assays to detect antibodies against , the agent of Lyme borreliosis, are used for detection of infection. However, serologic testing within the first month of infection is less sensitive as patients' antibody responses continue to develop.
View Article and Find Full Text PDFThe tick-borne spirochete, Borrelia miyamotoi, is an emerging pathogen of public health significance. Current B. miyamotoi serodiagnostic testing depends on reactivity against GlpQ which is not highly sensitive on acute phase serum samples.
View Article and Find Full Text PDFImproved serologic tests are needed for accurate diagnosis and proper treatment of early stage Lyme disease. We evaluated the 3 antigens currently used for 2-tiered IgM immunoblot testing (FlaB, OspC, and BmpA) in combination with 3 additional antigens (BBA65, BBA70, and BBA73) and measured the sensitivity and specificity against a serum repository of positive and negative controls. Using 3 statistical methods for positivity cutoff determinations and scoring criteria, we found increased sensitivities for early Lyme disease when 2 of 6 antigens were positive as compared with the 2 of 3 antigen IgM criteria currently used for second-tier immunoblot scoring.
View Article and Find Full Text PDFBorrelia burgdorferi, the agent of Lyme borreliosis, can elude hosts' innate and adaptive immunity as part of the course of infection. The ability of B. burgdorferi to invade or be internalized by host cells in vitro has been proposed as a mechanism for the pathogen to evade immune responses or antimicrobials.
View Article and Find Full Text PDFThe Borrelia burgdorferi outer surface membrane proteins BBA65, BBA66, BBA69, BBA70, and BBA73 were tested for their ability to confer protection against B. burgdorferi infection challenge. Mice were immunized with recombinant forms of the proteins singly or in combinations.
View Article and Find Full Text PDFLaboratory testing for the diagnosis of Lyme disease is performed primarily by serologic assays and is accurate for detection beyond the acute stage of the infection. Serodiagnostic assays to detect the early stages of infection, however, are limited in their sensitivity, and improvement is warranted. We analyzed a series of Borrelia burgdorferi proteins known to be induced within feeding ticks and/or during mammalian infection for their utility as serodiagnostic markers against a comprehensive panel of Lyme disease patient serum samples.
View Article and Find Full Text PDFThe complex segmented genome of Borrelia burgdorferi is comprised of a linear chromosome along with numerous linear and circular plasmids essential for tick and/or mammalian infectivity. The pathogenic necessity for specific borrelial plasmids has been identified; most notably, infections of the tick vector and mammalian host both require linear plasmid 25 (lp25). Genes carried on lp25, specifically bptA and pncA, are postulated to play a role for B.
View Article and Find Full Text PDFThe Borrelia burgdorferi bba64 gene product is a surface-localized lipoprotein synthesized within mammalian and tick hosts and is involved in vector transmission of disease. These properties suggest that BBA64 may be a vaccine candidate against Lyme borreliosis. In this study, protective immunity against B.
View Article and Find Full Text PDFThe impact of the Borrelia burgdorferi surface-localized immunogenic lipoprotein BBA66 on vector and host infection was evaluated by inactivating the encoding gene, bba66, and characterizing the mutant phenotype throughout the natural mouse-tick-mouse cycle. The BBA66-deficient mutant isolate, Bb(ΔA66), remained infectious in mice by needle inoculation of cultured organisms, but differences in spirochete burden and pathology in the tibiotarsal joint were observed relative to the parental wild-type (WT) strain. Ixodes scapularis larvae successfully acquired Bb(ΔA66) following feeding on infected mice, and the organisms persisted in these ticks through the molt to nymphs.
View Article and Find Full Text PDFVector Borne Zoonotic Dis
November 2012
The enzootic cycle of Borrelia burgdorferi, the etiologic agent of Lyme disease, involves Ixodes spp. ticks and vertebrates. Resident tick Borrelia, harbored inside the midgut, are eventually expelled with the tick's saliva into the vertebrate host when a tick consumes a blood meal.
View Article and Find Full Text PDFTicks are found worldwide and afflict humans with many tick-borne illnesses. Ticks are vectors for pathogens that cause Lyme disease and tick-borne relapsing fever (Borrelia spp.), Rocky Mountain Spotted fever (Rickettsia rickettsii), ehrlichiosis (Ehrlichia chaffeensis and E.
View Article and Find Full Text PDFBorrelia burgdorferi infection causes Lyme borreliosis in humans, a condition which can involve a systemic spread of the organism to colonize various tissues and organs. If the infection is left untreated by antimicrobials, it can lead to manifestations including, arthritis, carditis, and/or neurological problems. Identification and characterization of B.
View Article and Find Full Text PDFBorrelia burgdorferi, the causative agent of Lyme borreliosis, is transmitted to humans from the bite of Ixodes spp. ticks. During the borrelial tick-to-mammal life cycle, B.
View Article and Find Full Text PDFBorrelia burgdorferi, the bacterium that causes Lyme disease, is transmitted to a susceptible host by Ixodes spp. tick bites. However, there is uncertainty whether B.
View Article and Find Full Text PDFThe spirochetal agent of Lyme disease, Borrelia burgdorferi, is transmitted by bites of Ixodes ticks to mammalian reservoir hosts and humans. The mechanism(s) by which the organism is trafficked from vector to host is poorly understood. In this study, we demonstrate that a B.
View Article and Find Full Text PDFBorrelia burgdorferi, the etiological agent of Lyme disease in humans, is vectored between mammalian hosts in nature by Ixodes ticks. The organism adapts to diverse environments encountered throughout the enzootic cycle by differentially expressing essential gene products to survive the specialized conditions, whether in ticks or warm-blooded hosts. However, little is known regarding the identity and/or function of B.
View Article and Find Full Text PDF