Publications by authors named "Robert D Danby"

NKG2D is a natural killer cell activating receptor recognising ligands on infected or tumorigenic cells, leading to their cytolysis. There are eight known genes encoding NKG2D ligands: MICA, MICB and ULBP1-6. MICA and MICB are highly polymorphic and well characterised, whilst ULBP ligands are less polymorphic and the functional implication of their diversity is not well understood.

View Article and Find Full Text PDF

Objectives: NKG2D is an activating receptor expressed by natural killer (NK) and CD8+ T cells and activation intensity varies by NKG2D expression level or nature of its ligand. An NKG2D gene polymorphism determines high (HNK1) or low (LNK1) expression. MICA is the most polymorphic NKG2D ligand and stronger effector cell activation associates with methionine rather than valine at residue 129.

View Article and Find Full Text PDF

Background: Allogeneic haematopoietic cell transplantation (HCT) is a curative therapy for severe haematological disorders. However, it carries significant risk of morbidity and mortality. To improve patient outcomes, better graft selection strategies are needed, incorporating HLA matching with clinically important graft characteristics.

View Article and Find Full Text PDF

Regulatory T cells (Tregs) are CD4 T cells that are key players of immune tolerance. They are powerful suppressor cells, able to impact the function of numerous immune cells, including key effectors of inflammation such as effector T cells. For this reason, Tregs are an ideal candidate for the development of cell therapy approaches to modulate immune responses.

View Article and Find Full Text PDF

Allogeneic haematopoietic stem cell transplant (HSCT) recipients are at increased risk of morbidity and mortality, often due to the development of acute or chronic graft-versus-host disease (GVHD). Low numbers or proportions of regulatory T cells (Tregs) have been reported in patients who develop GVHD. We undertook a systematic review of studies that reported the Treg composition of HSCT grafts in patients with haematological malignancies.

View Article and Find Full Text PDF