Publications by authors named "Robert D Beech"

Background: Alterations in stress-related gene expression may play a role in stress-related drinking and the risk of alcohol dependence.

Methods: Microarrays were used to measure changes in gene expression in peripheral blood in nonsmoking, social drinking subjects exposed to 3 types of personalized imagery: neutral, stressful (but not alcohol related), and alcohol-related cues. Gene expression was measured at baseline, immediately after, and 1 hour after stimulus presentation.

View Article and Find Full Text PDF

Background: Preclinical and clinical studies have implicated changes in cytokine and innate immune gene-expression in both the development of and end-organ damage resulting from alcohol dependence. However, these changes have not been systematically assessed on the basis of alcohol consumption in human subjects.

Methods: Illumina Sentrix Beadchip (Human-6v2) microarrays were used to measure levels of gene-expression in peripheral blood in 3 groups of subjects: those with alcohol dependence (AD, n = 12), heavy drinkers (HD; defined as regular alcohol use over the past year of at least 8 standard drinks/wk for women and at least 15 standard drinks/wk for men, n = 13), and moderate drinkers (MD; defined as up to 7 standard drinks/wk for women and 14 standard drinks/wk for men, n = 17).

View Article and Find Full Text PDF

Objective:   To identify specific genetic pathways showing altered expression in peripheral blood of depressed subjects with bipolar disorder (BPD).

Methods:   Illumina Sentrix BeadChip (Human-6v2) microarrays containing >48,000 transcript probes were used to measure levels of gene expression in peripheral blood from 20 depressed subjects with BPD and in 15 healthy control subjects. Quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) was used to confirm a subset of these differences.

View Article and Find Full Text PDF

Evidence from a variety of sources suggests that structural alterations in the brain, including neurogenesis, may play a role in both the pathogenesis of mood disorders and the mechanism of action of antidepressants. Previous studies have implicated both the transforming growth factor-beta (TGF-beta), and the phosphatidyl inositol-3 kinase (PI3K)-Akt pathways in the neurogenesis-promoting and behavioral properties of antidepressants. Forkhead box protein G1 (FoxG1) is a major regulator of both of these pathways, and FoxG1 heterozygous null mice (FoxG1+/-) have previously been reported to have deficits in adult hippocampal neurogenesis and behavioral abnormalities including deficits in contextual fear learning.

View Article and Find Full Text PDF

Understanding the fate of adult-generated neurons and the mechanisms that influence them requires consistent labeling and tracking of large numbers of stem cells. We generated a nestin-CreER(T2)/R26R-yellow fluorescent protein (YFP) mouse to inducibly label nestin-expressing stem cells and their progeny in the adult subventricular zone (SVZ) and subgranular zone (SGZ). Several findings show that the estrogen ligand tamoxifen (TAM) specifically induced recombination in stem cells and their progeny in nestin-CreER(T2)/R26R-YFP mice: 97% of SGZ stem-like cells (GFAP/Sox2 with radial glial morphology) expressed YFP; YFP+ neurospheres could be generated in vitro after recombination in vivo, and maturing YFP+ progeny were increasingly evident in the olfactory bulb (OB) and dentate gyrus (DG) granule cell layer.

View Article and Find Full Text PDF

Rab33A, a member of the small GTPase superfamily, is an X-linked gene that is expressed in brain, lymphocytes, and normal melanocytes, but is downregulated in melanoma cells. We demonstrate that in normal melanocytes Rab33A colocalizes with melanosomal proteins and that a constitutively active GTPase mutant suppresses their transport to the melanosomes. In the brain, Rab33A is present throughout the cortex, as well as in the hippocampal CA fields.

View Article and Find Full Text PDF

Background: A wide variety of antidepressants act as noncompetitive antagonists of nicotinic acetylcholine receptors (nAChRs), but the relationship between this antagonism and the therapeutic effects of antidepressants is unknown.

Methods: Antidepressant properties of the noncompetitive nAChR antagonist mecamylamine in the forced swim test were tested alone and in combination with the tricyclic antidepressant amitriptyline. Mice lacking high-affinity nAChRs were tested in three behavioral models to determine whether these receptors are required for behavioral effects of amitriptyline in common models of antidepressant action.

View Article and Find Full Text PDF

Adult hippocampal neurogenesis declines with age in parallel with decreased performance on a variety of hippocampal-dependent tasks. We measured the rate of cellular proliferation in the hippocampus of mice lacking the beta 2-subunit of the nicotinic acetylcholine receptor (beta 2-/- mice) at three ages: young adult (3 months old), fully adult (7-10 months old), and aged (22-24 months old). Consistent with previous studies, we observed an age-related decline in hippocampal proliferation in both groups.

View Article and Find Full Text PDF

The subventricular zone (SVZ) is a major neurogenic region in the adult brain. Cells from the SVZ give rise to two populations of olfactory bulb interneurons: the granule cells and periglomerular (PG) cells. Currently, little is known about the signaling pathways that direct these newly generated neurons to become either granule or PG neurons.

View Article and Find Full Text PDF

The archetypal TATA-box deficient G+C-rich promoter of the murine adenosine deaminase gene (Ada) requires a 48-bp minimal self-sufficient promoter element (MSPE) for function. This MSPE was used to isolate a novel full-length cDNA clone that encodes a 66-kDa murine G+C-rich promoter binding protein (mGPBP). The mGPBP mRNAs are ubiquitously expressed as either 3.

View Article and Find Full Text PDF