A group of bacterial proteases, the Pro-Pro endopeptidases (PPEPs), possess the unique ability to hydrolyze proline-proline bonds in proteins. Since a protease's function is largely determined by its substrate specificity, methods that can extensively characterize substrate specificity are valuable tools for protease research. Previously, we achieved an in-depth characterization of PPEP prime-side specificity.
View Article and Find Full Text PDFThe antibiotic management of catheter-related infections (CRIs) often fails owing to the emergence of antimicrobial-resistant strains and/or biofilm/persister apparitions. Thus, we investigated the efficacy of two novel antimicrobial agents, i.e.
View Article and Find Full Text PDFOP-145 and SAAP-148, two 24-mer antimicrobial peptides derived from human cathelicidin LL-37, exhibit killing efficacy against both Gram-positive and Gram-negative bacteria at comparable peptide concentrations. However, when it comes to the killing activity against , the extent of membrane permeabilization does not align with the observed bactericidal activity. This is the case in living bacteria as well as in model membranes mimicking the cytoplasmic membrane (CM).
View Article and Find Full Text PDFProteases comprise the class of enzymes that catalyzes the hydrolysis of peptide bonds, thereby playing a pivotal role in many aspects of life. The amino acids surrounding the scissile bond determine the susceptibility toward protease-mediated hydrolysis. A detailed understanding of the cleavage specificity of a protease can lead to the identification of its endogenous substrates, while it is also essential for the design of inhibitors.
View Article and Find Full Text PDFTo combat infection by microorganisms host organisms possess a primary arsenal via the innate immune system. Among them are defense peptides with the ability to target a wide range of pathogenic organisms, including bacteria, viruses, parasites, and fungi. Here, we present the development of a novel machine learning model capable of predicting the activity of antimicrobial peptides (AMPs), CalcAMP.
View Article and Find Full Text PDFSynthetic antimicrobial and antibiofilm peptide (SAAP-148) commits significant antimicrobial activities against antimicrobial resistant (AMR) planktonic bacteria and biofilms. However, SAAP-148 is limited by its low selectivity index, i.e.
View Article and Find Full Text PDFThe need for alternative treatment of multi-drug-resistant bacteria led to the increased design of antimicrobial peptides (AMPs). AMPs exhibit a broad antimicrobial spectrum without a distinct preference for a specific species. Thus, their mechanism, disruption of fundamental barrier function by permeabilization of the bacterial cytoplasmic membrane is considered to be rather general and less likely related to antimicrobial resistance.
View Article and Find Full Text PDFRecently, using a deep learning approach, the novel antibiotic halicin was discovered. We compared the antibacterial activities of two novel bactericidal antimicrobial agents, i.e.
View Article and Find Full Text PDFThe development of antimicrobial agents against multidrug-resistant bacteria is an important medical challenge. Antimicrobial peptides (AMPs), human cathelicidin LL-37 and its derivative OP-145, possess a potent antimicrobial activity and were under consideration for clinical trials. In order to overcome some of the challenges to their therapeutic potential, a very promising AMP, SAAP-148 was designed.
View Article and Find Full Text PDFPurpose: Radical resection is paramount for curative oncological surgery. Fluorescence-guided surgery (FGS) aids in intraoperative identification of tumor-positive resection margins. This study aims to assess the feasibility of urokinase plasminogen activator receptor (uPAR) targeting antibody fragments for FGS in a direct comparison with their parent IgG in various relevant in vivo models.
View Article and Find Full Text PDFObjectives: Antibodies targeting post-translationally modified proteins, such as anti-carbamylated protein antibodies (anti-CarP antibodies) are present in the sera of rheumatoid arthritis (RA) patients. These autoantibodies associate with increased risk of RA development and with severity of joint destruction. It is not known which proteins in the RA joint are recognised by anti-CarP antibodies.
View Article and Find Full Text PDFPurpose: Aberrantly expressed glycans in cancer are of particular interest for tumor targeting. This proof-of-concept in vivo study aims to validate the use of aberrant Lewis glycans as target for antibody-based, real-time imaging of gastrointestinal cancers.
Procedures: Immunohistochemical (IHC) staining with monoclonal antibody FG88.
Antimicrobial peptides are considered promising candidates for the development of novel antimicrobial agents to combat infections by multi-drug-resistant (MDR) bacteria. Here, we describe the identification and characterization of the synthetic peptide TC19, derived from the human thrombocidin-1-derived peptide L3. Biophysical experiments into the interaction between TC19 and mimics of human and bacterial plasma membranes demonstrated that the peptide is highly selective for bacterial membranes.
View Article and Find Full Text PDFAnn Clin Microbiol Antimicrob
December 2019
Background: We investigated the efficacy of a synthetic antimicrobial peptide SAAP-148, which was shown to be effective against Methicillin-resistant Staphylococcus aureus (MRSA) on tape-stripped mice skin. Unexpectedly, SAAP-148 was not effective against MRSA in our pilot study using rats with excision wounds. Therefore, we investigated factors that might have contributed to the poor efficacy of SAAP-148.
View Article and Find Full Text PDFSkin bacterial colonization/infection is a frequent cause of morbidity in patients with chronic wounds and allergic/inflammatory skin diseases. This study aimed to develop a novel approach to eradicate meticillin-resistant Staphylococcus aureus (MRSA) from human skin. To achieve this, the stability and antibacterial activity of the novel LL-37-derived peptide P10 in four ointments was compared.
View Article and Find Full Text PDFTumor-specific fluorescent imaging agents are moving towards the clinic, supporting surgeons with real-time intraoperative feedback about tumor locations. The epithelial cell adhesion molecule (EpCAM) is considered as one of the most promising tumor-specific proteins due its high overexpression on epithelial-derived cancers. This study describes the development and evaluation of EpCAM-F800, a novel fluorescent anti-EpCAM antibody fragment, for intraoperative tumor imaging.
View Article and Find Full Text PDFEnhancing T cell responses against both viral and tumor Ags requires efficient costimulation and directed delivery of peptide Ags into APCs. Long peptide vaccines are considered favorable vaccine moieties from a clinical perspective, as they can harbor more than one immunogenic epitope enabling treatment of a broader target population. In addition, longer peptides are not extracellularly loaded on MHC class I; rather, they require intracellular processing and will thereby be presented to T cells mainly by professional APCs, thereby avoiding the risk of tolerance induction.
View Article and Find Full Text PDFDevelopment of novel antimicrobial agents is a top priority in the fight against multidrug-resistant (MDR) and persistent bacteria. We developed a panel of synthetic antimicrobial and antibiofilm peptides (SAAPs) with enhanced antimicrobial activities compared to the parent peptide, human antimicrobial peptide LL-37. Our lead peptide SAAP-148 was more efficient in killing bacteria under physiological conditions in vitro than many known preclinical- and clinical-phase antimicrobial peptides.
View Article and Find Full Text PDFImmune complexes are potent mediators of cellular immunity and have been extensively studied for their disease mediating properties in humans and for their role in anti-cancer immunity. However, a viable approach to use antibody-complexed antigen as vehicle for specific immunotherapy has not yet reached clinical use. Since virtually all people have endogenous antibodies against tetanus toxoid (TTd), such commonly occurring antibodies are promising candidates to utilize for immune modulation.
View Article and Find Full Text PDFWheat gluten confers superior baking quality to wheat based products but elicits a pro-inflammatory immune response in patients with celiac disease. Transamidation of gluten by microbial transglutaminase (mTG) and tissue transglutaminase (tTG) reduces the immunogenicity of gluten; however, little information is available on the minimal modification sufficient to eliminate gliadin immunogenicity nor has the effectiveness of transamidation been studied with T-cell clones from patients. Here we demonstrate that mTG can efficiently couple three different acyl-acceptor molecules, l-lysine, glycine ethyl ester, and hydroxylamine, to gliadin peptides and protein.
View Article and Find Full Text PDFPurpose: Recently we showed that a number of carboxylated near-infrared fluorescent (NIRF) cyanine dyes possess strong necrosis avid properties in vitro as well as in different mouse models of spontaneous and therapy-induced tumor necrosis, indicating their potential use for cancer diagnostic- and prognostic purposes. In the previous study, the detection of the cyanines was achieved by whole body optical imaging, a technique that, due to the limited penetration of near-infrared light, is not suitable for investigations deeper than 1 cm within the human body. Therefore, in order to facilitate clinical translation, the purpose of the present study was to generate a necrosis avid cyanine-based NIRF probe that could also be used for single photon emission computed tomography (SPECT).
View Article and Find Full Text PDFWe previously found the LL-37-derived peptide P60.4Ac to be effective against methicillin-resistant Staphylococcus aureus (MRSA) on human epidermal models (EMs). The goal of this study was to identify the preferred carrier for this peptide for topical application on skin and mucosal surfaces.
View Article and Find Full Text PDFOP-145, a synthetic antimicrobial peptide developed from a screen of the human cathelicidin LL-37, displays strong antibacterial activities and is--at considerably higher concentrations--lytic to human cells. To obtain more insight into its actions, we investigated the interactions between OP-145 and liposomes composed of phosphatidylglycerol (PG) and phosphatidylcholine (PC), resembling bacterial and mammalian membranes, respectively. Circular dichroism analyses of OP-145 demonstrated a predominant α-helical conformation in the presence of both membrane mimics, indicating that the different membrane-perturbation mechanisms are not due to different secondary structures.
View Article and Find Full Text PDFBacterial secreted proteins constitute a biologically important subset of proteins involved in key processes related to infection such as adhesion, colonization, and dissemination. Bacterial extracellular proteases, in particular, have attracted considerable attention, as they have been shown to be indispensable for bacterial virulence. Here, we analyzed the extracellular subproteome of Clostridium difficile and identified a hypothetical protein, CD2830, as a novel secreted metalloprotease.
View Article and Find Full Text PDF