Publications by authors named "Robert Colborn"

Purpose To compare the CT imaging performance of a carboxybetaine zwitterionic-coated tantalum oxide (TaCZ) nanoparticle CT contrast agent with that of a conventional iodinated contrast agent in a swine model meant to simulate overweight and obese patients. Materials and Methods Four swine were evaluated inside three different-sized adipose-equivalent encasements emulating abdominal girths of 102, 119, and 137 cm. Imaging was performed with a 64-detector row CT scanner at six scan delays after intravenous injection of 240 mg element (Ta or I) per kilogram of body weight of TaCZ or iopromide.

View Article and Find Full Text PDF

Purpose: To develop a simple method for producing liquid-tissue-surrogate (LTS) materials that accurately represent human soft tissues in terms of density and X-ray attenuation coefficient.

Methods And Materials: We evaluated hypothetical mixtures of water, glycerol, butanol, methanol, sodium chloride, and potassium nitrate; these mixtures were intended to emulate human adipose, blood, brain, kidney, liver, muscle, pancreas, and skin. We compared the hypothetical densities, effective atomic numbers (Z ), and calculated discrete-energy CT attenuation [Hounsfield Units (HU)] of the proposed materials with those of human tissue elemental composition as specified in International Commission on Radiation Units (ICRU) Report 46.

View Article and Find Full Text PDF

Objectives: The aim of this study was to assess whether the low- to high-kVp computed tomography (CT) number ratio at dual-energy CT is affected by changes in patient diameter.

Methods: Seven contrast-producing elements were housed sequentially within an abdomen phantom. Fat rings enlarged the phantom diameter from 26 to 44 cm.

View Article and Find Full Text PDF

The introduction of spectral CT imaging in the form of fast clinical dual-energy CT enabled contrast material to be differentiated from other radiodense materials, improved lesion detection in contrast-enhanced scans, and changed the way that existing iodine and barium contrast materials are used in clinical practice. More profoundly, spectral CT can differentiate between individual contrast materials that have different reporter elements such that high-resolution CT imaging of multiple contrast agents can be obtained in a single pass of the CT scanner. These spectral CT capabilities would be even more impactful with the development of contrast materials designed to complement the existing clinical iodine- and barium-based agents.

View Article and Find Full Text PDF

Objectives: The aim of this study was to produce and evaluate a proposed computed tomography (CT) contrast agent based on carboxybetaine zwitterionic (CZ)-coated soluble tantalum oxide (TaO) nanoparticles (NPs). We chose tantalum to provide superior imaging performance compared with current iodine-based clinical CT contrast agents. We developed the CZ coating to provide biological and physical performance similar to that of current iodinated contrast agents.

View Article and Find Full Text PDF

To assess the ability of dual-energy CT (DECT) to separate intravenous contrast of bowel wall from intraluminal contrast, we scanned 16 rabbits on a clinical DECT scanner: n = 3 using only iodinated intravenous contrast, and n = 13 double-contrast enhanced scans using iodinated intravenous contrast and experimental enteric non-iodinated contrast agents in the bowel lumen (five bismuth, four tungsten, and four tantalum based). Representative image pairs from conventional CT images and DECT iodine density maps of small bowel (116 pairs from 232 images) were viewed by four abdominal imaging attending radiologists to independently score each comparison pair on a visual analog scale (-100 to +100%) for (1) preference in small bowel wall visualization and (2) preference in completeness of intraluminal enteric contrast subtraction. Median small bowel wall visualization was scored 39 and 42 percentage points (95% CI 30-44% and 36-45%, both p < 0.

View Article and Find Full Text PDF

Purpose: To quantify the computed tomographic (CT) image contrast produced by potentially useful contrast material elements in clinically relevant imaging conditions.

Materials And Methods: Equal mass concentrations (grams of active element per milliliter of solution) of seven radiodense elements, including iodine, barium, gadolinium, tantalum, ytterbium, gold, and bismuth, were formulated as compounds in aqueous solutions. The compounds were chosen such that the active element dominated the x-ray attenuation of the solution.

View Article and Find Full Text PDF

Objectives: Metal-containing nanoparticles show great promise as x-ray contrast media and could enable reduced radiation dose, increased contrast, and the visualization of smaller anatomic features. In this study, we report progress toward these goals using a size-fractionated core-shell tantalum oxide nanoparticle contrast agent.

Materials And Methods: A core-shell tantalum oxide nanoparticle contrast agent was synthesized and size fractionated for preclinical investigation of biodistribution, blood half-life, organ retention, and histopathology.

View Article and Find Full Text PDF

Tantalum oxide nanoparticles show great potential as the next generation of X-ray contrast media. Recently, we reported advances in tantalum oxide nanoparticles and identified improvements that were required for such particles to progress further. Namely, the viscosity of concentrated particles, the amount of retention in reticuloendothelial (RES) tissues, and the effect of large quantities of particles on the kidneys after administration were all identified as critical factors which needed further study, understanding, and development.

View Article and Find Full Text PDF