Publications by authors named "Robert Chunhua Zhao"

Background: Obesity is becoming one of the major non-communicable diseases with increasing incidence and risks that cannot be ignored. However effective and safe clinical treatment strategies still need to be deeply explored. Increased number and volume of adipocytes lead to overweight and obesity.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is a significant contributor to global mortality and morbidity, with emerging evidence indicating a heightened risk of developing Alzheimer's disease (AD) following TBI. This study aimed to explore the molecular intersections between TBI and AD, focusing on the role of adipose mesenchymal stem cell (ADMSC)-derived exosomes and hub genes involved in microglial polarization. Transcriptome profiles from TBI (GSE58485) and AD (GSE74614) datasets were analyzed to identify differentially expressed genes (DEGs).

View Article and Find Full Text PDF

Cognitive decline and memory impairment are subsequently result in neuronal apoptosis and synaptic damage. Aberrant regulation of microRNAs has been implicated in the pathogenesis of Alzheimer's disease (AD) and may play a pivotal role in the early stages of the disease. In this study, we identified the critical role of miR-4763-3p in AD pathogenesis, focusing on early-stage mild cognitive impairment (AD-MCI).

View Article and Find Full Text PDF

UVB radiation induces oxidative stress, DNA damage, and inflammation, leading to skin wrinkling, compromised barrier function, and an increased risk of carcinogenesis. Addressing or preventing photoaging may offer a promising therapeutic avenue for these conditions. Recent research indicated that mesenchymal stem cells (MSCs) exhibit significant therapeutic potential for various skin diseases.

View Article and Find Full Text PDF
Article Synopsis
  • Using mesenchymal stem cells for skin injury treatment faces challenges like ensuring these cells can effectively integrate and maintain their healing properties.
  • DNA self-assembly techniques can be leveraged to create multifunctional structures on cell surfaces, boosting their therapeutic potential.
  • Engineered stem cells with DNA nanofiber decoration showed improved abilities to scavenge harmful reactive oxygen species, attach to damaged blood vessel cells, and promote new blood vessel formation, making them a promising option for healing wounds in a mouse model.
View Article and Find Full Text PDF

Hydrogen-bonded organic frameworks (HOFs) are emerging as multifunctional materials with exceptional biocompatibility, abundant active sites, and tunable porosity, which are highly beneficial for advanced wound care. However, a significant challenge involves transforming pristine HOFs powders into lightweight, ultrathin, freestanding membranes compatible with soft biological systems. Herein, the study successfully develops shape-adaptive HOF-based matrix membranes (HMMs) using a polymer-assisted liquid-air interface technique.

View Article and Find Full Text PDF

Psoriasis (Ps) is one of the most common chronic inflammatory skin disorders with its pathogenesis correlated with dysregulated innate and adaptive system. Even though biological agents have advanced the treatment of psoriasis, however, there are huge limitations, like high adverse reactions and relapse rate. Therefore, it is of great interest in searching clinical resolutions with better safety and efficacy.

View Article and Find Full Text PDF

The delay in wound healing caused by chronic wounds or pathological scars is a pressing issue in clinical practice, imposing significant economic and psychological burdens on patients. In particular, with the aging of the population and the increasing incidence of diseases such as diabetes, impaired wound healing is one of the growing health problems. MicroRNA (miRNA) plays a crucial role in wound healing and regulates various biological processes.

View Article and Find Full Text PDF

Psoriasis is an immune-mediated, chronic, relapsing, inflammatory, systemic disease induced by individual-environmental interactions, and is often lifelong because of the difficulty of treatment. In recent years, a variety of targeted therapies, including biologics, have improved the lesions and quality of life of most psoriasis patients, but they still do not address the problem of relapse and may be associated with decreased efficacy or adverse events such as infections over time. Therefore, there is an urgent need for breakthroughs in psoriasis treatment and in relapse-delaying and non-pharmacologic strategies, and stem cell therapy for psoriasis has emerged.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) is an autoimmune disease that affects the living quality of patients, especially the elderly population. RA-related morbidity and mortality increase significantly with age, while current clinical drugs for RA are far from satisfactory and may have serious side effects. Therefore, the development of new drugs with higher biosafety and efficacy is demanding.

View Article and Find Full Text PDF

Lipid droplets serve as primary storage organelles for neutral lipids in neurons, glial cells, and other cells in the nervous system. Lipid droplet formation begins with the synthesis of neutral lipids in the endoplasmic reticulum. Previously, lipid droplets were recognized for their role in maintaining lipid metabolism and energy homeostasis; however, recent research has shown that lipid droplets are highly adaptive organelles with diverse functions in the nervous system.

View Article and Find Full Text PDF

Aging-related hypogonadism involves complex mechanisms in humans, predominantly relating to the decline of multiple hormones and senile gonads. Late-onset hypogonadism (LOH) and erectile dysfunction (ED) are the main manifestations in men, while premature ovarian insufficiency (POI) and menopause are the main forms in women. Anti-aging measures include lifestyle modification and resistance training, hormonal supplementation, stem cell therapy, metformin, and rapamycin.

View Article and Find Full Text PDF

Acute lung injury (ALI) is a severe inflammatory lung disease, with high mortality rates. Early intervention by reactive oxygen species (ROS) scavengers could reduce ROS accumulation, break the inflammation expansion chain in alveolar macrophages (AMs), and avoid irreversible damage to alveolar epithelial and endothelial cells. Here, we reported cell-penetrating R9 peptide-modified triangular DNA origami nanostructures (tDONs-R9) as a novel nebulizable drug that could reach the deep alveolar regions and exhibit an enhanced uptake preference of macrophages.

View Article and Find Full Text PDF

Background: LncRNAs regulate tumorigenesis and development in a variety of cancers. We substantiate for the first time that LINC00606 is considerably expressed in glioblastoma (GBM) patient specimens and is linked with adverse prognosis. This suggests that LINC00606 may have the potential to regulate glioma genesis and progression, and that the biological functions and molecular mechanisms of LINC00606 in GBM remain largely unknown.

View Article and Find Full Text PDF

Although PD-1 inhibitors have revolutionized the treatment paradigm of non-small cell lung cancer (NSCLC), their efficacy in treating NSCLC has remained unsatisfactory. Targeting cancer-associated fibroblasts (CAFs) is a potential approach for improving the immunotherapy response. Multitarget antiangiogenic tyrosine kinase receptor inhibitors (TKIs) can enhance the efficacy of PD-1 inhibitors in NSCLC patients.

View Article and Find Full Text PDF

Cyaonoside A (CyA), derived from the natural Chinese medicine, , which was for a long time used to treat knee injuries and relieve joint pain in traditional Chinese medicine, showed an unclear mechanism for protecting cartilage. In addition, CyA was poorly hydrosoluble and incapable of being injected directly into the joint cavity, which limited its clinical application. This study reveals that CyA resisted IL-1β-mediated chondrogenic inflammation and apoptosis.

View Article and Find Full Text PDF

Osteoporotic fractures are the most severe complications of osteoporosis, characterized by poor bone quality, difficult realignment and fixation, slow fracture healing, and a high risk of recurrence. Clinically managing these fractures is relatively challenging, and in the context of rapid aging, they pose significant social hazards. The rapid advancement of disciplines such as biophysics and biochemistry brings new opportunities for future medical diagnosis and treatment.

View Article and Find Full Text PDF

Cellular senescence is an irreversible and multifaceted process inducing tissue dysfunction and organismal aging, and thus the clearance of senescent cells can prevent or delay the onset of aging-related pathologies. Herein, we developed an augmented photothermal therapy strategy integrated with an antibody against β2-microglobulin (aB2MG) and an immune adjuvant imiquimod (R837) to effectively accelerate senescent cell apoptosis and clearance under a near-infrared light. With this strategy, the designed CroR@aB2MG enables the targeting of senescent cells and the application of photothermal therapy concomitantly, the initiation of immune clearance subsequently, and finally the realization of protective effects against senescence.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers developed DNA-based self-assembled composites that help MSCs stick to wounds, improve their survival, and promote faster healing.
  • * In animal studies, these engineered MSCs showed increased blood vessel formation and better wound closure, highlighting their potential as a new approach for treating skin damage.
View Article and Find Full Text PDF

Background: Novel therapeutic targets are urgently needed for treating drug-resistant non-small cell lung cancer (NSCLC) and overcoming drug resistance to molecular-targeted therapies. Regulator of G protein signaling 20 (RGS20) is identified as an upregulated factor in many cancers, yet its specific role and the mechanism through which RGS20 functions in NSCLC remain unclear. Our study aimed to identify the role of RGS20 in NSCLC prognosis and delineate associated cellular and molecular pathways.

View Article and Find Full Text PDF

Cellular senescence significantly affects the proliferative and differentiation capacities of mesenchymal stem cells (MSCs). Identifying key regulators of senescence and exploring potential intervention strategies, including drug-based approaches, are active areas of research. In this context, S-adenosyl-l-methionine (SAM), a critical intermediate in sulfur amino acid metabolism, emerges as a promising candidate for mitigating MSC senescence.

View Article and Find Full Text PDF

Background: Hypoxia is a pivotal factor influencing cellular gene expression and contributing to the malignant progression of tumors. Metabolic anomalies under hypoxic conditions are predominantly mediated by mitochondria. Nonetheless, the exploration of hypoxia-induced long noncoding RNAs (lncRNAs) associated with mitochondria remains largely uncharted.

View Article and Find Full Text PDF

Cellular senescence is an irreversible and multifaceted process inducing tissue dysfunction and organismal aging, and thus the clearance of senescent cells can prevent or delay the onset of aging-related pathologies. Herein, we developed an augmented photothermal therapy strategy integrated with an antibody against β2-microglobulin (aB2MG) and an immune adjuvant imiquimod (R837) to effectively accelerate senescent cell apoptosis and clearance under a near-infrared light. With this strategy, the designed CroR@aB2MG enables the targeting of senescent cells and the application of photothermal therapy concomitantly, the initiation of immune clearance subsequently, and finally the realization of protective effects against senescence.

View Article and Find Full Text PDF

Knee osteoarthritis, a widespread degenerative condition, impacts a younger population and leads to high disability rates. Nature often provides solutions for aging and disease prevention. Mesenchymal stem cells (MSCs) and Radix Achyranthis Bidentatae (AB) are natural substances with potential.

View Article and Find Full Text PDF