Marburg virus (MARV) was the first filovirus to be identified following an outbreak of viral hemorrhagic fever disease in Marburg, Germany in 1967. Due to several factors inherent to filoviruses, they are considered a potential bioweapon that could be disseminated via an aerosol route. Previous studies demonstrated that MARV virus-like particles (VLPs) containing the glycoprotein (GP), matrix protein VP40 and nucleoprotein (NP) generated using a baculovirus/insect cell expression system could protect macaques from subcutaneous (SQ) challenge with multiple species of marburgviruses.
View Article and Find Full Text PDFThe West Africa Ebola virus disease (EVD) outbreak has reached unprecedented magnitude and caused worldwide concerns for the spread of this deadly virus. Recent findings in nonhuman primates (NHPs) demonstrate that antibodies can be protective against EVD. However, the role of antibody response in vaccine-mediated protection is not fully understood.
View Article and Find Full Text PDFFiloviruses cause hemorrhagic fever resulting in significant morbidity and mortality in humans. Several vaccine platforms that include multiple virus-vectored approaches and virus-like particles (VLPs) have shown efficacy in nonhuman primates. Previous studies have shown protection of cynomolgus macaques against homologous infection for Ebola virus (EBOV) and Marburg virus (MARV) following a three-dose vaccine regimen of EBOV or MARV VLPs, as well as heterologous protection against Ravn Virus (RAVV) following vaccination with MARV VLPs.
View Article and Find Full Text PDFInfectious disease has only recently been recognized as a major threat to the survival of Endangered chimpanzees and Critically Endangered gorillas in the wild. One potentially powerful tool, vaccination, has not been deployed in fighting this disease threat, in good part because of fears about vaccine safety. Here we report on what is, to our knowledge, the first trial in which captive chimpanzees were used to test a vaccine intended for use on wild apes rather than humans.
View Article and Find Full Text PDFNovel cationic pentablock copolymers with poly(diethylamino ethyl methacrylate) blocks covalently attached to parent triblock Pluronic copolymers have been designed and developed as sustained release non-viral gene delivery vectors. These copolymers electrostatically condense plasmid DNA into nanostructures (nanoplexes) and further self-assemble above critical concentration to form thermoreversible hydrogels at physiological temperatures. Unlike other sustained gene delivery systems of non-ionic copolymers that release naked DNA, hydrogels of pentablock copolymer/DNA nanoplexes dissolve in excess buffers to release DNA compacted inside the nanoplexes.
View Article and Find Full Text PDFNovel cationic pentablock copolymers based on poly(2-diethylaminoethylmethacrylate) (PDEAEM) and Pluronic F127 were evaluated as non-viral gene delivery vectors from a physiochemical point of view for stability and transfection efficiency in complete growth media. A novel strategy was introduced to sterically stabilize the polyplexes of such Pluronic-based cationic polymers against aggregation with serum proteins. As cationic pentablock copolymers condense plasmid DNA into nanoplexes of 100-150 nm diameter, unmodified Pluronic added to the formulation self-assemble with the pentablock copolymers on the surface of polyplexes and shield the cationic PDEAEM chains of pentablock copolymers sterically with its long poly(ethyleneoxide) chains.
View Article and Find Full Text PDFThe hyperacute immune response in humans is a potent mechanism of xenograft rejection mediated by complement-fixing natural antibodies recognizing alpha(1,3)-galactosyl epitopes (alphaGal) not present on human cells. We exploited this immune mechanism to create a whole cell cancer vaccine to treat melanoma tumors. B16 melanoma vaccines genetically engineered to express alphaGal epitopes (B16alphaGal) effectively treated preexisting s.
View Article and Find Full Text PDFThe major barrier for xenotransplantation in humans is the presence of alpha(1-3) Galactosyl epitopes (alphaGal) in xenogeneic tissue and the vast quantities of natural antibodies (Ab) produced by humans against this epitope. The binding of anti-alphaGal Ab to cells expressing alphaGal triggers a complement-mediated hyperacute rejection of target cells. The hyperacute rejection of whole cancer cells, modified to express alphaGal epitopes, could be exploited as a new cancer vaccine to treat human cancers.
View Article and Find Full Text PDF