Publications by authors named "Robert C Susil"

Studies suggest that anterior beams with in vivo range verification would improve rectal dosimetry in proton therapy for prostate cancer. We investigated whether prostate-rectum spacers would enhance or diminish the benefits of anterior proton beams in these treatments. Twenty milliliters of hydrogel was injected between the prostate and rectum of a cadaver using a transperineal approach.

View Article and Find Full Text PDF

Purpose: In radiotherapy for prostate cancer, the rectum is the major dose-limiting structure. Physically separating the rectum from the prostate (e.g.

View Article and Find Full Text PDF

Background: Compared with fluoroscopy, the current imaging standard of care for guidance of electrophysiology procedures, magnetic resonance imaging (MRI) provides improved soft-tissue resolution and eliminates radiation exposure. However, because of inherent magnetic forces and electromagnetic interference, the MRI environment poses challenges for electrophysiology procedures. In this study, we sought to test the feasibility of performing electrophysiology studies with real-time MRI guidance.

View Article and Find Full Text PDF

Purpose: To report early observation of transient PSA elevations on this pilot study of external beam radiation therapy and magnetic resonance imaging (MRI) guided high dose rate (HDR) brachytherapy boost.

Materials And Methods: Eleven patients with intermediate-risk and high-risk localized prostate cancer received MRI guided HDR brachytherapy (10.5 Gy each fraction) before and after a course of external beam radiotherapy (46 Gy).

View Article and Find Full Text PDF

Background: We sought to determine the intra- and inter-radiation therapist reproducibility of a previously established matching technique for daily verification and correction of isocenter position relative to intraprostatic fiducial markers (FM).

Materials And Methods: With the patient in the treatment position, anterior-posterior and left lateral electronic images are acquired on an amorphous silicon flat panel electronic portal imaging device. After each portal image is acquired, the therapist manually translates and aligns the fiducial markers in the image to the marker contours on the digitally reconstructed radiograph.

View Article and Find Full Text PDF

Purpose: We investigated the accuracy and feasibility of a system that provides transrectal needle access to the prostate concurrent with 1.5 Tesla MRI which previously has not been possible.

Materials And Methods: In 5 patients with previously diagnosed prostate cancer, MRI guided intraprostatic placement of gold fiducial markers (4 procedures) and/or prostate biopsy (3 procedures) was performed using local anesthesia.

View Article and Find Full Text PDF

Purpose: Understanding the internal dynamics of prostate injections, particularly injection pattern distribution is a key step to developing new therapies for prostate disease that may be best served with a direct injection approach. Due to excellent properties involving liquid contrast agents, MRI can be used for targeting and monitoring of injections into organs and tissues.

Materials And Methods: Eleven intraprostatic injections were performed in vivo with canines using a custom transrectal guiding and imaging system for use in a standard 1.

View Article and Find Full Text PDF

The biological characterization of an individual patient's tumor by noninvasive imaging will have an important role in cancer care and clinical research if the molecular processes that underlie the image data are known. Spatial heterogeneity in the dynamics of magnetic resonance imaging contrast enhancement (DCE-MRI) is hypothesized to reflect variations in tumor angiogenesis. Here we demonstrate the feasibility of precisely colocalizing DCE-MRI data with the genomic and proteomic profiles of underlying biopsy tissue using a novel MRI-guided biopsy technique in a patients with prostate cancer.

View Article and Find Full Text PDF

Purpose: To develop and optimize a technique for inverse treatment planning based solely on magnetic resonance imaging (MRI) during high-dose-rate brachytherapy for prostate cancer.

Methods And Materials: Phantom studies were performed to verify the spatial integrity of treatment planning based on MRI. Data were evaluated from 10 patients with clinically localized prostate cancer who had undergone two high-dose-rate prostate brachytherapy boosts under MRI guidance before and after pelvic radiotherapy.

View Article and Find Full Text PDF

This paper reports a novel remotely actuated manipulator for access to prostate tissue under magnetic resonance imaging guidance (APT-MRI) device, designed for use in a standard high-field MRI scanner. The device provides three-dimensional MRI guided needle placement with millimeter accuracy under physician control. Procedures enabled by this device include MRI guided needle biopsy, fiducial marker placements, and therapy delivery.

View Article and Find Full Text PDF

Transmembrane potential responses of single cardiac cells stimulated at rest were studied with uniform rectangular field pulses having durations of 0.5-10 ms. Cells were enzymatically isolated from guinea pig ventricles, stained with voltage sensitive dye di-8-ANEPPS, and stimulated along their long axes.

View Article and Find Full Text PDF

A technique for transperineal high-dose-rate (HDR) prostate brachytherapy and needle biopsy in a standard 1.5 T MRI scanner is demonstrated. In each of eight procedures (in four patients with intermediate to high risk localized prostate cancer), four MRI-guided transperineal prostate biopsies were obtained followed by placement of 14-15 hollow transperineal catheters for HDR brachytherapy.

View Article and Find Full Text PDF

Purpose: Magnetic resonance imaging (MRI) provides superior visualization of the prostate and surrounding anatomy, making it the modality of choice for imaging the prostate gland. This pilot study was performed to determine the feasibility and dosimetric quality achieved when placing high-dose-rate prostate brachytherapy catheters under MRI guidance in a standard "closed-bore" 1.5T scanner.

View Article and Find Full Text PDF

The purpose of this study was to demonstrate the use of a transrectal system that enables precise magnetic resonance (MR) image guidance and monitoring of prostate interventions. The system used a closed-bore 1.5-T MR imaging unit and enables one to take advantage of the higher signal-to-noise ratio achieved with traditional magnet designs, which is crucial for accurate targeting and monitoring of prostate interventions.

View Article and Find Full Text PDF

The design and application of an intravascular extended sensitivity (IVES) MRI antenna is described. The device is a loopless antenna design that incorporates both an insulating, dielectric coating and a winding of the antenna whip into a helical shape. Because this antenna produces a broad region of high SNR and also allows for imaging near the tip of the device, it is useful for imaging long, luminal structures.

View Article and Find Full Text PDF

In many studies concerning wire heating during MR imaging, a "resonant wire length" that maximizes RF heating is determined. This may lead to the nonintuitive conclusion that adding more wire, so as to avoid this resonant length, will actually improve heating safety. Through a theoretical analysis using the method of moments, we show that this behavior depends on the phase distribution of the RF transmit field.

View Article and Find Full Text PDF

The design and application of a two-wire electrophysiology (EP) catheter that simultaneously records the intracardiac electrogram and receives the MR signal for active catheter tracking is described. The catheter acts as a long loop receiver, allowing for visualization of the entire catheter length while simultaneously behaving as a traditional two-wire EP catheter, allowing for intracardiac electrogram recording and ablation. The application of the device is demonstrated by simultaneously tracking the catheter and recording the intracardiac electrogram in canine models using 7 and 10 frame/sec real-time imaging sequences.

View Article and Find Full Text PDF

With the rapid growth of interventional MRI, radiofrequency (RF) heating at the tips of guidewires, catheters, and other wire-shaped devices has become an important safety issue. Previous studies have identified some of the variables that affect the relative magnitude of this heating but none could predict the absolute amount of heating to formulate safety margins. This study presents the first theoretical model of wire tip heating that can accurately predict its absolute value, assuming a straight wire, a homogeneous RF coil, and a wire that does not extend out of the tissue.

View Article and Find Full Text PDF