NAD+-dependent histone deacetylases (sirtuins) are enzymes that cleave acetyl groups from lysine residues in histones and other proteins. Potent selective sirtuin inhibitors are interesting tools for the investigation of the biological functions of these enzymes and may be future drugs for the treatment of cancer or neurodegenerative diseases. Herein we present the results from a protein-based virtual screen of a commercial database with subsequent biological testing of the most promising compounds.
View Article and Find Full Text PDFHistone deacetylases (HDACs) are enzymes that deacetylate acetyl lysines in histones and various non-histone proteins. Three classes of histone deacetylases have been described in humans: class I, II and IV were shown to be zinc dependent amidohydrolases and eleven subtypes are known today (HDAC1-11). Class III enzymes depend in their catalysis on NAD+ with the subsequent formation of nicotinamide and O acetyl-ADP ribose.
View Article and Find Full Text PDFNAD (+)-dependent histone deacetylases (sirtuins) are enzymes that cleave acetyl groups from lysines in histones and other proteins. Potent selective sirtuin inhibitors are interesting tools for the investigation of the biological functions of those enzymes and may be future drugs for the treatment of cancer. Splitomicin was among the first two inhibitors that were discovered for yeast sirtuins but showed rather weak inhibition on human enzymes.
View Article and Find Full Text PDF