Rising emissions from wildfires over recent decades in the Pacific Northwest are known to counteract the reductions in human-produced aerosol pollution over North America. Since amplified Pacific Northwest wildfires are predicted under accelerating climate change, it is essential to understand both local and transported contributions to air pollution in North America. Here, we find corresponding increases for carbon monoxide emitted from the Pacific Northwest wildfires and observe significant impacts on both local and down-wind air pollution.
View Article and Find Full Text PDFThis work serves as the second of a two-part study to improve surface PM forecasts in the continental U.S. through the integrated use of multi-satellite aerosol optical depth (AOD) products (MODIS Terra/Aqua and VIIRS DT/DB), multi chemical transport model (CTM) (GEOS-Chem, WRF-Chem and CMAQ) outputs and ground observations.
View Article and Find Full Text PDFAnnual global satellite-based estimates of fine particulate matter (PM) are widely relied upon for air-quality assessment. Here, we develop and apply a methodology for monthly estimates and uncertainties during the period 1998-2019, which combines satellite retrievals of aerosol optical depth, chemical transport modeling, and ground-based measurements to allow for the characterization of seasonal and episodic exposure, as well as aid air-quality management. Many densely populated regions have their highest PM concentrations in winter, exceeding summertime concentrations by factors of 1.
View Article and Find Full Text PDFLockdowns during the COVID-19 pandemic provide an unprecedented opportunity to examine the effects of human activity on air quality. The effects on fine particulate matter (PM) are of particular interest, as PM is the leading environmental risk factor for mortality globally. We map global PM concentrations for January to April 2020 with a focus on China, Europe, and North America using a combination of satellite data, simulation, and ground-based observations.
View Article and Find Full Text PDFEmissions and long-range transport of mineral dust and combustion-related aerosol from burning fossil fuels and biomass vary from year to year, driven by the evolution of the economy and changes in meteorological conditions and environmental regulations. This study offers both satellite and model perspectives on the interannual variability and possible trends of combustion aerosol and dust in major continental outflow regions over the past 15 years (2003-2017). The decade-long record of aerosol optical depth (AOD, denoted as ), separately for combustion aerosol ( ) and dust ( ), over global oceans is derived from the Collection 6 aerosol products of the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard both Terra and Aqua.
View Article and Find Full Text PDFExposure to outdoor fine particulate matter (PM) is a leading risk factor for mortality. We develop global estimates of annual PM concentrations and trends for 1998-2018 using advances in satellite observations, chemical transport modeling, and ground-based monitoring. Aerosol optical depths (AODs) from advanced satellite products including finer resolution, increased global coverage, and improved long-term stability are combined and related to surface PM concentrations using geophysical relationships between surface PM and AOD simulated by the GEOS-Chem chemical transport model with updated algorithms.
View Article and Find Full Text PDFSince aerosols are important to our climate system, we seek to observe the variability of aerosol properties within cloud systems. When applied to the satellite-borne Moderate-resolution Imaging Spectroradiometer (MODIS), the Dark Target (DT) retrieval algorithm provides global aerosol optical depth (AOD at 0.55 μm) in cloud-free scenes.
View Article and Find Full Text PDFLong-term measurements of global aerosol loading and optical properties are essential for assessing climate-related questions. Using observations of spectral reflectance and radiance, the dark-target (DT) aerosol retrieval algorithm is applied to Moderate-resolution Imaging Spectroradiometer sensors on both Terra (MODIS-T) and Aqua (MODIS-A) satellites, deriving products (known as MOD04 and MYD04, respectively) of global aerosol optical depth (AOD at 0.55 μm) over both land and ocean, and Angstrom Exponent (AE derived from 0.
View Article and Find Full Text PDFThe MEdium Resolution Imaging Spectrometer (MERIS) instrument on board ESA Envisat made measurements from 2002 to 2012. Although MERIS was limited in spectral coverage, accurate Aerosol Optical Thickness (AOT) from MERIS data are retrieved by using appropriate additional information. We introduce a new AOT retrieval algorithm for MERIS over land surfaces, referred to as eXtensible Bremen AErosol Retrieval (XBAER).
View Article and Find Full Text PDFGiven the importance of aerosol particles to radiative transfer via aerosol-radiation interactions, a methodology for tracking and diagnosing causes of temporal changes in regional-scale aerosol populations is illustrated. The aerosol optical properties tracked include estimates of total columnar burden (aerosol optical depth, AOD), dominant size mode (Ångström exponent, AE), and relative magnitude of radiation scattering versus absorption (single scattering albedo, SSA), along with metrics of the structure of the spatial field of these properties. Over well-defined regions of North America, there are generally negative temporal trends in mean and extreme AOD, and SSA.
View Article and Find Full Text PDFWe present a new approach to retrieve Aerosol Optical Depth (AOD) using the Moderate Resolution Imaging Spectroradiometer (MODIS) over the turbid coastal water. This approach supplements the operational Dark Target (DT) aerosol retrieval algorithm that currently does not conduct AOD retrieval in shallow waters that have visible sediments or sea-floor (i.e.
View Article and Find Full Text PDFWe estimated global fine particulate matter (PM2.5) concentrations using information from satellite-, simulation- and monitor-based sources by applying a Geographically Weighted Regression (GWR) to global geophysically based satellite-derived PM2.5 estimates.
View Article and Find Full Text PDF