The process of inflammation is orchestrated by macrophages, according to their state of differentiation: thus, classically activated (M1) macrophages initiate the process by elaborating proinflammatory cytokines and reactive oxygen species, whereas the latter phase is controlled by alternatively activated macrophages (M2) to resolve inflammation and promote tissue remodelling with the release of growth factors. In a simple human inflammatory response, such as acute crystal arthropathy, macrophages progress linearly through M1 and M2 phases; however, in chronic inflammatory responses, such as atherosclerosis and Diabetic Nephropathy (DN), both M1 and M2 macrophages may coexist, leading to persistent inflammation and fibrosis. A key macrophage receptor that regulates conversion from M1 to M2 is CD163, the hemoglobin scavenger receptor.
View Article and Find Full Text PDFIntraplaque hemorrhage accelerates atherosclerosis via oxidant stress and contributes to lesion development and destabilization. Normally, macrophages scavenge hemoglobin-haptoglobin (HbHp) complexes via CD163, and this process provokes the secretion of the anti-inflammatory atheroprotective cytokine interleukin (IL)-10. We therefore tested the hypothesis that HbHp complexes may drive monocyte differentiation to an atheroprotective phenotype.
View Article and Find Full Text PDFBackground: Thrombin generated during cardiopulmonary bypass activates the high-affinity thrombin receptor, protease-activated receptor 1 (PAR1), causing platelet dysfunction and excessive bleeding. The serine protease inhibitor aprotinin protects platelets against thrombin-mediated PAR1 activation in vitro and in vivo. Here we have investigated three novel recombinant aprotinin variants with specific modifications to the active site lysine at amino acid position 15 (arginine-15, arginine-15-alanine-17, and valine-15-leucine-17) for their effect on PAR1-mediated platelet aggregation in vitro.
View Article and Find Full Text PDFBasic calcium phosphate (BCP) crystal deposition underlies the development of arterial calcification. Inflammatory macrophages colocalize with BCP deposits in developing atherosclerotic lesions and in vitro can promote calcification through the release of TNF alpha. Here we have investigated whether BCP crystals can elicit a proinflammatory response from monocyte-macrophages.
View Article and Find Full Text PDF