Publications by authors named "Robert C Dunn"

Refractive index (RI) detection using backscatter interferometry (BSI) enables universal detection in capillary electrophoresis (CE). BSI detection is a versatile on-capillary approach that is easily integrated with capillary or microfluidic channels, straightforward to miniaturize, and inexpensive. The focused BSI light source can also double as the excitation source for fluorescence, enabling simultaneous universal (BSI) and specific (fluorescence) signals from the same detection volume.

View Article and Find Full Text PDF

Electroosmotic flow (EOF) is the bulk flow of solution in a capillary or microchannel induced by an applied electric potential. For capillary and microchip electrophoresis, the EOF enables analysis of both cations and anions in one separation and can be varied to modify separation speed and resolution. The EOF arises from an electrical double layer at the capillary wall and is normally controlled through the pH and ionic strength of the background buffer or with the use of additives.

View Article and Find Full Text PDF

Backscatter interferometry (BSI) is a refractive index (RI) detection method that is easily integrated with capillary electrophoresis (CE) and is capable of detecting species ranging from inorganic ions to proteins without additional labels or contrast agents. The BSI signal changes linearly with the square of the separation voltage which has been used to quantify sample injection, but has not been explored as a potential signal enhancement mechanism in CE. Here we develop a mathematical model that predicts a signal enhancement at high field strengths, where the BSI signal is dominated by the voltage dependent mechanism.

View Article and Find Full Text PDF

The appearance of unexpected peaks in capillary electrophoresis (CE) is common and can lengthen the time of method development as assay conditions and experimental parameters are varied to understand and mitigate the effects of the additional peaks. Additional peaks can arise when a single-analyte zone is split into multiple zones. Understanding the underlying mechanism of these phenomena, recognizing conditions that favor its presence, and knowing how to confirm and eliminate the effect are important for efficient method optimization.

View Article and Find Full Text PDF

Serum protein electrophoresis (SPE) separates serum proteins into bands whose shape and amplitude can alert clinicians to a range of disorders. This is followed by more specific immunoassays to quantify important antigens and confirm a diagnosis. Here we develop a high-speed capillary electrophoresis (HSCE) platform capable of simultaneous SPE and immunoassay measurements.

View Article and Find Full Text PDF

High speed capillary electrophoresis (HSCE) combined with refractive index (RI) detection is developed for the rapid separation and detection of inorganic ions and amino acids. A mixture of three inorganic ions (K, Na, Li) and eight amino acids (Lys, Arg, Ala, Gly, Val, Thr, Trp, Asp) are detected using back scatter interferometry (BSI), without the need for chemical modifications or contrast. A thin-walled separation capillary (50 μm i.

View Article and Find Full Text PDF

High-speed capillary electrophoresis (HSCE) is implemented using a 10 cm total length fused-silica capillary (50 μm i.d., 80 μm o.

View Article and Find Full Text PDF

Wavelength-modulated back scatter interferometry (M-BSI) is shown to improve the detection metrics for refractive index (RI) sensing in microseparations. In M-BSI, the output of a tunable diode laser is focused into the detection zone of a separation channel as the excitation wavelength is rapidly modulated. This spatially modulates the observed interference pattern, which is measured in the backscattered direction.

View Article and Find Full Text PDF

Scanning resonator microscopy (SRM) is a scanning probe technique that uses a small, optical resonator attached to the end of a conventional atomic force microscopy cantilever to simultaneously measure optical and topography properties of sample surfaces. In SRM, whispering gallery mode (WGM) resonances excited in the attached optical resonator shift in response to changes in surface refractive index (RI), providing a mechanism for mapping RI with high spatial resolution. In our initial report, the SRM tip was excited with a fixed excitation wavelength during sample scanning, which limits the approach.

View Article and Find Full Text PDF

Western blotting is a ubiquitous tool used extensively in the clinical and research settings to identify proteins and characterize their levels. It has rapidly become a mainstay in research laboratories due to its specificity, low cost, and ease of use. The specificity arises from the orthogonal processes used to identify proteins.

View Article and Find Full Text PDF

Significance: With the growing population of baby boomers, there is a great need to determine the effects of advanced age on the function of the immune system. Recent Advances: It is universally accepted that advanced age is associated with a chronic low-grade inflammatory state that is referred to as inflamm-aging, which alters the function of both immune and nonimmune cells. Mononuclear phagocytes play a central role in both the initiation and resolution of inflammation in multiple organ systems and exhibit marked changes in phenotype and function in response to environmental cues, including the low levels of pro-inflammatory mediators seen in the aged.

View Article and Find Full Text PDF

Whispering gallery mode (WGM) resonators are small, radially symmetric dielectrics that recirculate light through continuous total internal reflection. High-Q resonances are observed that shift in response to changes in surrounding refractive index, leading to many applications in label-free sensing. Surface binding measurements with WGM resonators have demonstrated competitive analytical detection metrics compared to other sensing schemes.

View Article and Find Full Text PDF

Rapid biosensing requires fast mass transport of the analyte to the surface of the sensing element. To optimize analysis times, both mass transport in solution and the geometry and size of the sensing element need to be considered. Small dielectric spheres, tens of microns in diameter, can act as label-free biosensors using whispering gallery mode (WGM) resonances.

View Article and Find Full Text PDF

Fluorescence measurements of the sterol analog 23-(dipyrrometheneboron difluoride)-24-norcholesterol (BODIPY-cholesterol) are used to compare the effects of cholesterol (Chol) in monolayers of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC)/1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)/Chol and chicken egg sphingomyelin (SM)/DOPC/Chol. Monolayers are formed using the Langmuir-Blodgett technique and compared at surface pressures of 8 and 30 mN/m. In particular, these ternary lipid mixtures are compared using both ensemble and single-molecule fluorescence measurements of BODIPY-cholesterol.

View Article and Find Full Text PDF

Single molecule fluorescence measurements are used to probe the effects of GM1 in DPPC monolayers. Langmuir-Blodgett films of GM1 and DPPC were doped with ~10(-8) mol % of the fluorescent lipid probe, BODIPY-PC, and transferred onto glass substrates at 23 mN/m. As shown previously, the individual orientation of each BODIPY-PC probe in the membrane can be measured using defocused polarized total internal reflection fluorescence microscopy, revealing changes in film properties at the molecular level.

View Article and Find Full Text PDF

Whispering gallery mode resonators are small, radially symmetric dielectrics that trap light through continuous total internal reflection. The resonant condition at which light is efficiently confined within the structure is linked with refractive index, which has led to the development of sensitive label-free sensing schemes based on whispering gallery mode resonators. One resonator design uses inexpensive high index glass microspheres that offer intrinsically superior optical characteristics, but have proven difficult to multiplex and integrate with the fluidics for sample delivery and fluid exchange necessary for assay development.

View Article and Find Full Text PDF

Small optical microresonators that support whispering gallery mode (WGM) resonances are emerging as powerful new platforms for biosensing. These resonators respond to changes in refractive index and potentially offer many advantages for label-free sensing. Recently we reported an approach for detecting WGM resonances based on fluorescence imaging and demonstrated its utility by quantifying the ovarian cancer marker CA-125 in buffer.

View Article and Find Full Text PDF

The desire to directly probe biological structures on the length scales that they exist has driven the steady development of various high-resolution microscopy techniques. Among these, optical microscopy and, in particular, fluorescence-based approaches continue to occupy dominant roles in biological studies given their favorable attributes. Fluorescence microscopy is both sensitive and specific, is generally noninvasive toward biological samples, has excellent temporal resolution for dynamic studies, and is relatively inexpensive.

View Article and Find Full Text PDF

Single molecule fluorescence measurements have recently been used to probe the orientation of fluorescent lipid analogs doped into lipid films at trace levels. Using defocused polarized total internal reflection fluorescence microscopy (PTIRF-M), these studies have shown that fluorophore orientation responds to changes in membrane surface pressure and composition, providing a molecular level marker of membrane structure. Here we extend those studies by characterizing the single molecule orientations of six related BODIPY probes doped into monolayers of DPPC.

View Article and Find Full Text PDF

Single-molecule fluorescence measurements have been used to characterize membrane properties, and recently showed a linear evolution of the fluorescent lipid analogue BODIPY-PC toward small tilt angles in Langmuir-Blodgett monolayers as the lateral surface pressure is increased. In this work, we have performed comparative molecular dynamics (MD) simulations of BODIPY-PC in DPPC (dipalmitoylphosphatidylcholine) monolayers and bilayers at three surface pressures (3, 10, and 40 mN/m) to explore (1) the microscopic correspondence between monolayer and bilayer structures, (2) the fluorophore's position within the membrane, and (3) the microscopic driving forces governing the fluorophore's tilting. The MD simulations reveal very close agreement between the monolayer and bilayer systems in terms of the fluorophore's orientation and lipid chain order, suggesting that monolayer experiments can be used to approximate bilayer systems.

View Article and Find Full Text PDF

Single molecule fluorescence measurements are used to probe the structural changes in glass-supported DPPC bilayers as a function of relative humidity (RH). Defocused polarized total internal reflection fluorescence microscopy is employed to determine the three-dimensional orientation of the fluorescent lipid analogue BODIPY-PC, doped into DPPC membranes in trace amounts. Supported DPPC bilayers formed using vesicle fusion and Langmuir-Blodgett/Langmuir-Schäfer (LB/LS) transfer are compared and show similar trends as a function of relative humidity.

View Article and Find Full Text PDF

Near-field scanning optical microscopy (NSOM) is an emerging optical technique that enables simultaneous high-resolution fluorescence and topography measurements. Here we discuss selected applications of NSOM to biological systems that help illustrate the utility of its high spatial resolution and simultaneous collection of both fluorescence and topography. For the biological sciences, these attributes seem particularly well suited for addressing ongoing issues in membrane organization, such as those regarding lipid rafts, and protein-protein interactions.

View Article and Find Full Text PDF

Single-molecule orientations of the fluorescent lipid analogue BODIPY-PC doped into lipid monolayers and bilayers of DPPC are used to characterize the structure present in the films as a function of sterol content. Out-of-focus polarized total internal reflection fluorescence microscopy (PTIRF-M) measurements are used to characterize the single-molecule tilt angles with respect to the membrane normal. Tilt angle histograms for Langmuir-Blodgett monolayers of DPPC reveal bimodal distributions at all surface pressures studied.

View Article and Find Full Text PDF

Lipid monolayers of L-alpha-dipalmitoylphosphatidylcholine (DPPC) are used to pattern substrates using the Langmuir-Blodgett (LB) technique. Lipid monolayers are deposited onto freshly cleaved mica surfaces or glass capillaries under conditions that lead to distinct patterns in the film. Exposure of the supported monolayer to ethyl 2-cyanoacrylate fumes leads to preferential polymerization in the more hydrated regions of the patterned monolayer.

View Article and Find Full Text PDF

Biological membranes are highly heterogeneous structures that are thought to use this heterogeneity to organize and modify the function of membrane constituents. Probing membrane organization, structure, and changes therein are crucial for linking structural metrics with function in biological membranes. Here we report the use of single-molecule fluorescence studies to measure membrane structure at the molecular level.

View Article and Find Full Text PDF