Metal orthopedic implants are largely biocompatible and generally achieve long-term structural fixation. However, some orthopedic implants may loosen over time even in the absence of infection. fixation failure is multifactorial, but the fundamental biological defect is cellular dysfunction at the host-implant interface.
View Article and Find Full Text PDFIntegration of porous metal prosthetics, which restore form and function of irreversibly damaged joints, into remaining healthy bone is critical for implant success. We investigated the biological properties of adipose-tissue-derived mesenchymal stromal/stem cells (AMSCs) and addressed their potential to alter the in vitro microenvironment of implants. We employed human AMSCs as a practical source for musculoskeletal applications because these cells can be obtained in large quantities, are multipotent, and have trophic paracrine functions.
View Article and Find Full Text PDFLike any foreign object, orthopaedic implants are susceptible to infection when introduced into the human body. Without additional preventative measures, the absolute number of annual prosthetic joint infections will continue to rise, and may exceed the capacity of health care systems in the near future. Bacteria are difficult to eradicate from synovial joints due to their exceptionally diverse taxonomy, complex mechanistic attachment capabilities, and tendency to evolve antibiotic resistance.
View Article and Find Full Text PDFThe biological interface between an orthopedic implant and the surrounding host tissue may have a dramatic effect upon clinical outcome. Desired effects include bony ingrowth (osseointegration), stimulation of osteogenesis (osteoinduction), increased vascularization, and improved mechanical stability. Implant loosening, fibrous encapsulation, corrosion, infection, and inflammation, as well as physical mismatch may have deleterious clinical effects.
View Article and Find Full Text PDF