Publications by authors named "Robert C Bielby"

We have previously induced differentiation of embryonic stem cells (ESC) to specific phenotypes by manipulating the culture conditions, including the use of indirect co-culture. In this study, we hypothesized that co-culture with primary chondrocytes can induce human embryonic stem cells (hESC) to differentiate towards the chondrocyte lineage. Co-cultures of hESC and chondrocytes were established using well inserts, with control comprising hESC grown alone or with fibroblasts.

View Article and Find Full Text PDF

Despite the considerable progress made in directing embryonic stem cell (ESC) differentiation to therapeutically useful lineages, several issues remain to be resolved before ESCs can be used for cell therapy: 1) increasing the efficiency of specific lineage generation, and 2) developing time- and cost-effective culture systems for controlling ESC differentiation. Our study aimed to develop efficient methods to enhance mesodermal differentiation and thereby upregulate osteogenic differentiation of ESCs. Specifically, murine ESCs (mESCs) were cultured in the presence of 50% conditioned medium (CM) from the human hepatocarcinoma cell line HepG2, which resulted in enhanced mesoderm formation during embryoid body (EB) formation in the CM-treated mESCs (CM-mESCs).

View Article and Find Full Text PDF

The pluripotency of embryonic stem cells (ESC) is offering new opportunities in tissue engineering and cell therapy. We have shown previously that alveolar epithelial cells, specifically type II pneumocytes, can be derived from murine ESC and hypothesized that a similar protocol could be used successfully on human ESC. Undifferentiated human ESC were induced to form embryoid bodies that were transferred into adherent culture conditions and grown in a medium designed for the maintenance of mature small airway epithelium.

View Article and Find Full Text PDF

Embryonic stem (ES) cells represent a potentially useful cell source for tissue regeneration. Previously, using factors known to enhance differentiation and mineralization of primary osteoblasts, we were able to generate cell populations enriched with osteoblasts from a murine ES cell source. Dexamethasone was a potent inducer of osteoblast differentiation and the timing of stimulation markedly increased the proportion of osteoblast lineage cells.

View Article and Find Full Text PDF

The first report of the derivation of embryonic stem (ES) cell lines from human blastocysts had major implications for research into developmental biology and regenerative medicine. Finding efficient and reproducible methods to derive therapeutically useful cells from an ES cell source is a key feature of many regenerative medicine strategies. We have previously demonstrated that it is possible to induce osteogenic differentiation of murine ES cells by supplementing the culture medium with ascorbic acid, beta-glycerophosphate, and dexamethasone.

View Article and Find Full Text PDF

Bone loss is a significant clinical problem, and treatments utilizing donated graft material are limited. To meet future demands in the healthcare industry, there has been a shift of outlook toward the use of bioactive materials for tissue regeneration. A number of in vivo and in vitro studies have highlighted the potential of the bioactive glass ceramic 45S5 Bioglass as a synthetic regenerative scaffold.

View Article and Find Full Text PDF

Study Design: This study examined how the culture system and region of cellular origin affect disc cell morphology and extracellular matrix production.

Objective: To determine the role of the cell populations in the different regions of the adult intervertebral disc in maintaining gradients in composition across the disc.

Summary Of Background Data: It is not known whether the steep profiles in composition across the intervertebral disc are maintained by distinct cell populations or whether differences in cell metabolism are determined by changes in the physical environment across the disc.

View Article and Find Full Text PDF