Background: Imlifidase is an immunoglobulin G (IgG)-specific protease conditionally approved in the EU for desensitization in highly sensitized crossmatch positive kidney transplant patients. Imlifidase efficiently cleaves both heavy chains of IgG in a 2-step process. However, low levels of the intermediate cleavage product, single-cleaved IgG (scIgG), may persist in the circulation.
View Article and Find Full Text PDFAim: The aim of this study was to investigate if human IgM is a cleavable substrate for imlifidase and to explain an observed effect in anti-HLA IgM single antigen bead (SAB) assays in sensitized patients.
Methods: Serum samples collected pre- and 24 h post-imlifidase administration from sensitized patients enrolled in a phase II trial were investigated for anti-HLA IgG and IgM using SAB assays, with and without in vitro IgG depletion using a CaptureSelect™ affinity matrix. In addition, pre-dose samples and purified human IgM samples were treated with imlifidase in vitro and evaluated by SDS-PAGE, Western blot (PE-conjugated anti-human IgM) and SAB (IgG, IgM) assays.
Mixed hematopoietic chimerism induction as a way to foster tolerance to donor organs in recipients who have been sensitized to donor antigens is challenging. Donor-specific antibodies (DSA) are a dominant barrier toward successful donor bone marrow engraftment. Although desensitization methods are routinely used in recipients with allosensitization for allogeneic bone marrow transplantation, engraftment is frequently unsuccessful.
View Article and Find Full Text PDFEndogenous plasma IgG sets an immunologic threshold that dictates the activity of tumor-directed therapeutic antibodies. Saturation of cellular antibody receptors by endogenous antibody limits antibody-dependent cell-mediated cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP). Here, we show how enzymatic cleavage of IgG using the bacterial enzyme IdeS can be utilized to empty both high and low affinity Fcγ-receptors and clear the entire endogenous antibody pool.
View Article and Find Full Text PDFAg binding to the BCR is a critical step in B cell development and activation, initiating a cascade of signaling events ultimately leading to proliferation, differentiation, or cell death. A bacterial enzyme, IgG-degrading enzyme of Streptococcus pyogenes (IdeS), was shown to specifically cleave IgG molecules below the hinge region of soluble IgG and when IgG is bound to Ag, resulting in one F(ab')2 molecule and one homodimeric Fc fragment. Whether IdeS could also cleave the IgG molecule when it is present in the BCR attached to the B cell membrane in a complex with CD79a and CD79b is unknown.
View Article and Find Full Text PDFUnlabelled: IdeS is a streptococcal protease that cleaves IgG antibodies into F(ab’)2 and Fc fragments with a unique degree of specificity, thereby providing a novel treatment opportunity of IgG-driven autoimmune conditions and antibody mediated transplant rejection. Here we report the results from a first in man, double blinded and randomized study with single ascending doses of IdeS in healthy, male subjects. Twenty healthy subjects were given intravenous single ascending doses of IdeS.
View Article and Find Full Text PDFCommon dietary components including vitamins A and D, omega-3 and probiotics are now widely accepted to be essential to protect against many diseases with an inflammatory nature. On the other hand, high-fat diets are documented to exert multiple deleterious effects, including fatty liver diseases. Here we discuss the effect of dietary components on regulatory T cell (Treg) homeostasis, a central element of the immune system to prevent chronic tissue inflammation.
View Article and Find Full Text PDFIntroduction: The Vβ12-transgenic mouse was previously generated to investigate the role of antigen-specific T cells in collagen-induced arthritis (CIA), an animal model for rheumatoid arthritis. This mouse expresses a transgenic collagen type II (CII)-specific T-cell receptor (TCR) β-chain and consequently displays an increased immunity to CII and increased susceptibility to CIA. However, while the transgenic Vβ12 chain recombines with endogenous α-chains, the frequency and distribution of CII-specific T cells in the Vβ12-transgenic mouse has not been determined.
View Article and Find Full Text PDFA protective and anti-inflammatory role for CD1d-dependent NKT cells (NKTs) has been reported in experimental and human autoimmune diseases. However, their role in arthritis has been unclear, with conflicting reports of CD1d-dependent NKTs acting both as regulatory and disease-promoting cells in arthritis. These differing modes of action might be due to genetic differences of inbred mice and incomplete backcrossing of gene-modified mice.
View Article and Find Full Text PDFAntibodies to citrulline-modified proteins have a high diagnostic value in rheumatoid arthritis (RA). However, their biological role in disease development is still unclear. To obtain insight into this question, a panel of mouse monoclonal antibodies was generated against a major triple helical collagen type II (CII) epitope (position 359-369; ARGLTGRPGDA) with or without arginines modified by citrullination.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) are multipotent cells that have the capacity to differentiate into various different cell lineages and can generate bone, cartilage and adipose tissue. MSCs are presently characterized using a broad range of different cell-surface markers that are not exclusive to MSCs and not sensitive to culture conditions or differentiation capacity. We show that the integrin subunits alpha10 and alpha11 of the collagen binding integrins alpha10beta1 and alpha11beta1 are expressed by human MSCs in monolayer cultures.
View Article and Find Full Text PDFLinkage analysis of F(2) crosses has led to identification of large numbers of quantitative trait loci (QTL) for complex diseases, but identification of the underlying genes has been more difficult. Reasons for this could be complications that arise from separation of interacting or neighboring loci. We made a partial advanced intercross (PAI) to characterize and fine-map linkage to collagen-induced arthritis in two chromosomal regions derived from the DBA/1 strain and crossed into the B10.
View Article and Find Full Text PDFEosinophilia is a characteristic feature of many inflammatory diseases including inflammatory bowel disease and asthma. It also occurs in a subtype of rheumatoid arthritis but the role of eosinophils has been unclear and animal models have been lacking. Here, we introduce a new mouse model to study the role of eosinophilia in arthritis.
View Article and Find Full Text PDFCollagen induced arthritis (CIA) is the most studied animal model for rheumatoid arthritis and is associated with the MHC class II molecule Aq. T-cell recognition of a peptide from type II collagen, CII256-270, bound to Aq is a requirement for development of CIA. Lysine 264 is the major T-cell recognition site of CII256-270 and CIA is in particular associated with recognition of lysine 264 after posttranslational hydroxylation and subsequent attachment of a beta-D-galactopyranosyl moiety.
View Article and Find Full Text PDFAntibodies specific for glucose-6-phosphate isomerase (G6PI) from T-cell receptor transgenic K/BxN mice are known to induce arthritis in mice, and immunization of DBA/1 mice with G6PI led to acute arthritis without permanent deformation of their joints. Because rheumatoid arthritis is a chronic disease, we set out to identify the capacity of G6PI to induce chronic arthritis in mice. Immunization with recombinant human G6PI induced a chronically active arthritis in mice with a C3H genomic background, whereas the DBA/1 background allowed only acute arthritis and the C57BL/10 background permitted no or very mild arthritis.
View Article and Find Full Text PDFCollagen type II (CII) is a relevant joint-specific autoantigen in the pathogenesis of rheumatoid arthritis (RA). Whereas the reasons for the breakage of self tolerance to this major cartilage component are still enigmatic, T cell responses to glycosylated CII determinants in RA patients indicate that post-translational modifications play a role. Since the conversion of arginine into citrulline by peptidylarginine deiminases (PAD) in some non-joint-specific antigens such as filaggrin or fibrin has been shown to give rise to RA-specific humoral immune responses, we investigated whether PAD modification of cartilage-specific CII might affect its recognition by circulating autoantibodies in early RA.
View Article and Find Full Text PDFLysine residues in type II collagen (CII) are normally hydroxylated and subsequently glycosylated in the chondrocyte. The immunodominant T cell epitope of CII involves such post-translationally modified lysine at position 264 that has been shown to be critical in the pathogenesis of murine collagen-induced arthritis and also in human rheumatoid arthritis. In this study we identified a line of transgenic mice expressing a TCR specific for hydroxylated rat CII epitope.
View Article and Find Full Text PDFThe existence of T cells restricted for the MHC I-like molecule CD1 is well established, but the function of these cells is still obscure; one implication is that CD1-dependent T cells regulate autoimmunity. In this study, we investigate their role in experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis, using CD1-deficient mice on a C57BL/6 background. We show that CD1-/- mice develop a clinically more severe and chronic EAE compared with CD1+/+ C57BL/6 mice, which was histopathologically confirmed with increased demyelination and CNS infiltration in CD1-/- mice.
View Article and Find Full Text PDFT cell recognition of the type II collagen (CII) 260-270 peptide is a bottleneck for the development of collagen-induced arthritis (CIA), an animal model of rheumatoid arthritis. We have earlier made C3H.Q mice expressing CII with glutamic acid instead of aspartic acid at position 266 (the MMC-C3H.
View Article and Find Full Text PDFType II collagen (CII) is a candidate cartilage-specific autoantigen, which can become post-translationally modified by hydroxylation and glycosylation. T cell recognition of CII is essential for the development of murine collagen-induced arthritis (CIA) and also occurs in rheumatoid arthritis (RA). The common denominator of murine CIA and human RA is the presentation of an immunodominant CII-derived glycosylated peptide on murine Aq and human DR4 molecules, respectively.
View Article and Find Full Text PDFThe most widely used model for rheumatoid arthritis is the collagen-induced arthritis (CIA) in mice. This model has gained acceptance since it is reproducible, well defined and has proven useful for development of new therapies for rheumatoid arthritis, as exemplified by the most recent advancement using TNFalpha neutralization treatment. The collagen-induced arthritis model, however, represents only certain pathways leading to arthritis and there is no consensus on how they operate.
View Article and Find Full Text PDF