The L-PBF process belongs to the most modern methods of manufacturing complex-shaped parts. It is used especially in the automotive, aviation industries, and in the consumer products industry as well. Numerical simulation in the powder sintering process is a means of optimizing time efficiency, accuracy and predicting future errors.
View Article and Find Full Text PDFThis study examines the microstructural characteristics and corrosion resistance of super duplex stainless steel (SDSS) produced through laser powder bed fusion (LPBF). The analysis shows that the as-printed samples mainly exhibit a ferritic microstructure, which is due to the fast-cooling rates of the LPBF technique. X-ray and microstructure analyses reveal the presence of minor austenite phases in the ferritic matrix.
View Article and Find Full Text PDFMaterials (Basel)
December 2023
Additive manufacturing is increasingly being used in the production of parts of simple as well as complex shapes designed for various areas of industry. Prevention of errors in the production process is currently enabled using simulation tools that have the function of predicting possible errors and, at the same time, providing a set of information about the behaviour of the material in the metal additive manufacturing process. This paper discusses the simulation processes of 316L stainless steel produced using the laser powder bed fusion (L-PBF) process.
View Article and Find Full Text PDFThe objective of this study was to formulate dip coatings, incorporating casein, NaOH, and nanocrystalline hydroxyapatite (nanoHAp), with self-healing properties for application on ZnMg3.2 wt.% alloy in the field of biomedical applications.
View Article and Find Full Text PDFAdditive manufacturing, including laser powder bed fusion, offers possibilities for the production of materials with properties comparable to conventional technologies. The main aim of this paper is to describe the specific microstructure of 316L stainless steel prepared using additive manufacturing. The as-built state and the material after heat treatment (solution annealing at 1050 °C and 60 min soaking time, followed by artificial aging at 700 °C and 3000 min soaking time) were analyzed.
View Article and Find Full Text PDFFormability and its prediction of high-strength steels is an important research subject for forming specialists and researchers in this field. Springback and its accurate prediction of high-strength steels are very common issues in metal forming processes. In this article, the impact of blank holding force and friction on the parts springback made of dual-phase steel was studied.
View Article and Find Full Text PDFThe aim of the article is to examine the workability of sintered powder material of aluminum alloy (Alumix 321) through severe plastic deformations under the conditions of the equal channel angular rolling (ECAR) process. Accordingly, the stress-strain analysis of the ECAR was carried out through a computer simulation using the finite element method (FEM) by Deform 3D software. Additionally, the formability of the ALUMIX 321 was investigated using the diametrical compression (DC) test, which was measured and analyzed by digital image correlation and finite element simulation.
View Article and Find Full Text PDFTo design a reliable forming process it is necessary to determine the mechanical and formability properties of the processed material, which are used as input parameters for forming simulations. High-strength steel is irreplaceable as a material for producing the deformation zones of current automobiles. This type of steel can be processed by conventional or unconventional forming methods.
View Article and Find Full Text PDFIn this work, AA1070 aluminium alloy sheets are joined using TIG and MIG welding after three different edge preparations. Shearing, water jet and plasma-cut processes were used to cut sheets, subsequently welded using ER5356 and ER4043 filler metals for TIG and MIG, respectively. Mechanical properties of the obtained sheets were assessed through tensile tests obtaining a relation between sheet preparation and welding tightness.
View Article and Find Full Text PDFDuring the past 50 years, the aim to reduce the eddy current losses in magnetic cores to a minimum led to the formulation of new materials starting from electrically insulated iron powders, today called Soft Magnetic Composites (SMC). Nowadays, this promising branch of materials is still held back by the mandatory tradeoff between energetic, electrical, magnetic, and mechanical performances. In most cases, the research activity focuses on the deposition of an insulating/binding layer, being one of the critical points in optimizing the final composite.
View Article and Find Full Text PDFThis review paper concerns the development of the chemical compositions and controlled processes of rolling and cooling steels to increase their mechanical properties and reduce weight and production costs. The paper analyzes the basic differences among high-strength steel (HSS), advanced high-strength steel (AHSS) and ultra-high-strength steel (UHSS) depending on differences in their final microstructural components, chemical composition, alloying elements and strengthening contributions to determine strength and mechanical properties. HSS is characterized by a final single-phase structure with reduced perlite content, while AHSS has a final structure of two-phase to multiphase.
View Article and Find Full Text PDFAdditive manufacturing is a key enabling technology in the manufacture of highly complex shapes, having very few geometric limitations compared to traditional manufacturing processes. The present paper aims at investigating mechanical properties at cryogenic temperatures for a 316L austenitic stainless steel, due to the wide possible cryogenic applications such as liquid gas confinement or superconductors. The starting powders have been processed by laser powder bed fusion (LPBF) and tested in the as-built conditions and after stress relieving treatments.
View Article and Find Full Text PDFMaterials (Basel)
November 2019
In powder metallurgy (PM), severe plastic deformation (SPD) is a well-known technological solution to achieve interesting properties. However, the occurrence of pores in the final product may limit these properties. Also, for a given type of microstructure, the stereometric parameters of the pore structures, such as shape (represented by Aspect and Dcircle) and distribution (fshape, and fcircle), decisively affect the final properties.
View Article and Find Full Text PDFAluminum alloys are widely used to produce automotive components, thanks to their great mechanical properties-to-density ratio. Engine components such as pistons are conventionally produced by casting of Al-Si eutectic alloys (Silumin alloys) such as EN AC 48000. Due to the harsh working conditions and the lower ductility if compared to aluminum-silicon alloys with lower silicon content, pistons made of this alloy are prone to fatigue failures in the skirt region.
View Article and Find Full Text PDF