Agonism of the 5-HT receptor represents one of the most well-studied and clinically proven mechanisms for pharmacological weight reduction. Selectivity over the closely related 5-HT and 5-HT receptors is critical as their activation has been shown to lead to undesirable side effects and major safety concerns. In this communication, we report the development of a new screening paradigm that utilizes an active site mutant D134A (D3.
View Article and Find Full Text PDFThe metabotropic glutamate receptor 5 (mGluR5) is an attractive target for the treatment of schizophrenia due to its role in regulating glutamatergic signaling in association with the -methyl-d-aspartate receptor (NMDAR). We describe the synthesis of 1-pyrazolo[3,4-]pyridines and their utility as mGluR5 positive allosteric modulators (PAMs) without inherent agonist activity. A facile and convergent synthetic route provided access to a structurally diverse set of analogues that contain neither the aryl-acetylene-aryl nor aryl-methyleneoxy-aryl elements, the predominant structural motifs described in the literature.
View Article and Find Full Text PDFThe continued evolution of our understanding of G protein-coupled receptor (GPCR) signaling has revealed new opportunities for drug discovery. Specifically, biased agonism at GPCRs and allosteric modulation of GPCRs both represent emerging areas of GPCR biology that hold promise for the development of novel GPCR-targeted therapeutics that may provide greater therapeutic efficacy and/or improved side-effect profiles. To obtain initial chemical leads, high-throughput screening (HTS) of a large compound library for the desired activity is often deployed during the early stages of a discovery program.
View Article and Find Full Text PDFDepression is a serious illness that affects millions of patients. Current treatments are associated with a number of undesirable side effects. Neurokinin 1 receptor (NK1R) antagonists have recently been shown to potentiate the antidepressant effects of serotonin-selective reuptake inhibitors (SSRIs) in a number of animal models.
View Article and Find Full Text PDFModulating GPR88 activity is suggested to have therapeutic utility in the treatment of CNS disorders, such as schizophrenia. This Letter will describe the discovery and SAR development of a class of potent GPR88 agonists.
View Article and Find Full Text PDFSmall molecule modulators of GPR88 activity (agonists, antagonists, or modulators) are of interest as potential agents for the treatment of a variety of psychiatric disorders including schizophrenia. A series of phenylglycinol and phenylamine analogs have been prepared and evaluated for their GPR88 agonist activity and pharmacokinetic (PK) properties.
View Article and Find Full Text PDFA series of 4-bicyclic heteroaryl 1,2,3,4-tetrahydroisoquinoline inhibitors of the serotonin transporter (SERT), norepinephrine transporter (NET), and dopamine transporter (DAT) was discovered. The synthesis and structure-activity relationship (SAR) of these triple reuptake inhibitors (TRIs) will be discussed. Compound 10i (AMR-2), a very potent inhibitor of SERT, NET, and DAT, showed efficacy in the rat forced-swim and mouse tail suspension models with minimum effective doses of 0.
View Article and Find Full Text PDFCyclopentylamine 4 was identified as a potent dual NK1R antagonist-SERT inhibitor. This compound demonstrated significant oral activity in the gerbil forced swimming test, suggesting that dual NK1R antagonists-SERT inhibitors may be useful in treating depression disorders.
View Article and Find Full Text PDFComprehensive structure activity relationship (SAR) studies were conducted on a focused screening hit, 2-(methylthio)-3-(phenylsulfonyl)-4H-pyrido[1,2-a]pyrimidin-4-imine (1, IC50: 4.0 nM), as 5-HT6 selective antagonists. Activity was improved some 2-4 fold when small, electron-donating groups were added to the central core as observed in 19, 20 and 26.
View Article and Find Full Text PDFThis report describes the synthesis, structure-activity relationships and activity of piperidine, homopiperidine, and azocane derivatives combining NK1 receptor (NK1R) antagonism and serotonin reuptake transporter (SERT) inhibition. Our studies culminated in the discovery of piperidine 2 and homopiperidine 8 as potent dual NK1R antagonists-SERT inhibitors. Compound 2 demonstrated significant activity in the gerbil forced swimming test, suggesting that dual NK1R antagonists-SERT inhibitors may be useful in treating depression disorders.
View Article and Find Full Text PDFHigh throughput screening led to the identification of a novel series of quinolone α7 nicotinic acetylcholine receptor (nAChR) agonists. Optimization of an HTS hit (1) led to 4-phenyl-1-(quinuclidin-3-ylmethyl)quinolin-2(1H)-one, which was found to be potent and selective. Poor brain penetrance in this series was attributed to transporter-mediated efflux, which was in turn due to high pKa.
View Article and Find Full Text PDFA series of substituted pyridines, ether linked to a phenylpiperidine core were optimized for dual NK(1)/SERT affinity. Optimization based on NK(1)/SERT binding affinities, and minimization of off-target ion channel activity lead to the discovery of compound 44. In vivo evaluation of 44 in the gerbil forced swim test (a depression model), and ex-vivo NK(1)/SERT receptor occupancy data support the potential of a dual acting compound for the treatment of depression.
View Article and Find Full Text PDFIn recent years, the increased use of cell-based functional assays for G protein-coupled receptors in high-throughput screening has enabled the design of robust assays to identify allosteric modulators (AMs) in addition to the more traditional orthosteric agonists and antagonists. In this article, the authors describe a screening format able to identify all ligand types using a triple-add assay that measures changes in cytosolic calcium concentration with three separate additions and reads in the same assay plate. This triple-add assay captures more small molecule ligand types than previously described assay formats without a significant increase in screening cost.
View Article and Find Full Text PDFOnce considered a pharmacological curiosity, allosteric modulation of seven transmembrane domain G-protein-coupled receptors (GPCRs) has emerged as a potentially powerful means to affect receptor function for therapeutic purposes. Allosteric modulators, which interact with binding sites topologically distinct from the orthosteric ligand binding sites, can potentially provide improved selectivity and safety, along with maintenance of spatial and temporal aspects of GPCR signaling. Accordingly, drug discovery efforts for GPCRs have increasingly focused on the identification of allosteric modulators.
View Article and Find Full Text PDFA series of novel oxime carbamates have been identified as potent inhibitors of the key regulatory enzyme of the endocannabinoid signaling system, fatty acid amide hydrolase (FAAH). In this Letter, the rationale behind the discovery and the biological evaluations of this novel class of FAAH inhibitors are presented. Both in vitro and in vivo results of selected targets are discussed, along with inhibition kinetics and molecular modeling studies.
View Article and Find Full Text PDFA series of hybrid molecules containing the cyclopropylmethylamino side chain found in homotryptamine (1S,2S)-2c and an isosteric heteroaryl or naphthyl core were prepared and their binding affinities for the human serotonin transporter determined. The most potent isosteres were CN-substituted naphthalenes. These results demonstrate that isosteric aromatic cores which lack an H-bond donor site may be substituted for the indole nucleus without substantial loss in hSERT binding.
View Article and Find Full Text PDFA class of bisarylimidazole derivatives are identified as potent inhibitors of the enzyme fatty acid amide hydrolase (FAAH). Compound 17 (IC(50)=2 nM) dose-dependently (0.1-10mg/kg, iv) potentiates the effects of exogenous anandamide (1 mg/kg, iv) in a rat thermal escape test (Hargreaves test), and shows robust antinociceptive activity in animal models of persistent (formalin test) and neuropathic (Chung model) pain.
View Article and Find Full Text PDFBackground: Aripiprazole (7-{4-[4-(2,3-dichlorophenyl)-1-piperazinyl]butoxy}-3,4-dihydro-2(1H)-quinolinone) is a novel antipsychotic with a mechanism of action that differs from current typical and atypical antipsychotics. Aripiprazole interacts with a range of receptors, including serotonin [5-hydroxytryptamine (5-HT)] and dopamine receptors.
Materials And Methods: This study examined aripiprazole's interactions with 5-HT systems in vitro and in vivo to further clarify its pharmacologic properties.
(E)-3-(Benzenesulfonyl)-2-(methylsulfanyl)pyrido[1,2-a]pyrimidin-4-ylidenamine (7) was found to be a potent and selective 5-HT(6) antagonist. A one-step synthesis of this compound is described.
View Article and Find Full Text PDF