Publications by authors named "Robert Bellas"

Extracellular ATP, adenosine (Ado), and adenosine plus homocysteine (Ado/HC) cause apoptosis of cultured pulmonary artery endothelial cells through the enhanced formation of intracellular S-adenosylhomocysteine and disruption of focal adhesion complexes. Because an increased intracellular ratio of S-adenosylhomocysteine/S-adenosylmethionine favors inhibition of methylation, we hypothesized that Ado/HC might act by inhibition of isoprenylcysteine-O-carboxyl methyltransferase (ICMT). We found that N-acetyl-S-geranylgeranyl-L-cysteine (AGGC) and N-acetyl-S-farnesyl-L-cysteine (AFC), which inhibit ICMT by competing with endogenous substrates for methylation, caused apoptosis.

View Article and Find Full Text PDF

Treatment of cultured bovine pulmonary endothelial cells (BPAEC) with adenosine (Ado) alone or in combination with homocysteine (Hc) leads to disruption of focal adhesion complexes, caspase-dependent degradation of components of focal adhesion complexes, and subsequent apoptosis. Endothelial cells transiently overexpressing paxillin or p130(Cas) cDNAs underwent Ado-Hc-induced apoptosis to an extent similar to that of cells transfected with vector alone. However, overexpression of focal adhesion kinase (FAK) cDNA blunted Ado-Hc-induced apoptosis.

View Article and Find Full Text PDF