Purpose: Renal medullary carcinoma (RMC) is a highly aggressive malignancy defined by the loss of the SMARCB1 tumor suppressor. It mainly affects young individuals of African descent with sickle cell trait, and it is resistant to conventional therapies used for other renal cell carcinomas. This study aimed to identify potential biomarkers for early detection and disease monitoring of RMC.
View Article and Find Full Text PDFPoly (ADP-ribose) polymerase inhibitors (PARPi) can encounter resistance through various mechanisms, limiting their effectiveness. Our recent research showed that PARPi alone can induce drug resistance by promoting autophagy. Moreover, our studies have revealed that anaplastic lymphoma kinase (ALK) plays a role in regulating the survival of ovarian cancer cells undergoing autophagy.
View Article and Find Full Text PDFBackground: Tumor-infiltrating lymphocyte (TIL) therapy has been restricted by intensive lymphodepletion and high-dose intravenous interleukin-2 (IL-2) administration. To address these limitations, we conducted preclinical and clinical studies to evaluate the safety, antitumor activity, and pharmacokinetics of an innovative modified regimen in patients with advanced gynecologic cancer.
Methods: Patient-derived xenografts (PDX) were established from a local recurrent cervical cancer patient.
Purpose: Ovarian cancer patients with HR proficiency (HRP) have had limited benefits from PARP inhibitor treatment, highlighting the need for improved therapeutic strategies. In this study, we developed a novel SIK2 inhibitor, SIC-19, and investigated its potential to enhance the sensitivity and expand the clinical utility of PARP inhibitors in ovarian cancer.
Methods: The SIK2 protein was modeled using a Molecular Operating Environment (MOE), and the most favorable model was selected based on a GBVI/WSA dG scoring function.
Background: Multiple antigens, autoantibodies (AAb), and antigen-autoantibody (Ag-AAb) complexes were compared for their ability to complement CA125 for early detection of ovarian cancer.
Methods: Twenty six biomarkers were measured in a single panel of sera from women with early stage (I-II) ovarian cancers (n = 64), late stage (III-IV) ovarian cancers (186), benign pelvic masses (200) and from healthy controls (502), and then split randomly (50:50) into a training set to identify the most promising classifier and a validation set to compare its performance to CA125 alone.
Results: Eight biomarkers detected ≥ 8% of early stage cases at 98% specificity.
Purpose: The Normal Risk Ovarian Screening Study (NROSS) tested a two-stage screening strategy in postmenopausal women at conventional hereditary risk where significantly rising cancer antigen (CA)-125 prompted transvaginal sonography (TVS) and abnormal TVS prompted surgery to detect ovarian cancer.
Methods: A total of 7,856 healthy postmenopausal women were screened annually for a total of 50,596 woman-years in a single-arm study (ClinicalTrials.gov identifier: NCT00539162).
Pancreatic ductal adenocarcinoma (PDAC) and low-grade ovarian cancer (LGSOC) are characterized by the prevalence of KRAS oncogene mutations. DIRAS3 is the first endogenous non-RAS protein that heterodimerizes with RAS, disrupts RAS clustering, blocks RAS signaling, and inhibits cancer cell growth. Here, we found that DIRAS3-mediated KRAS inhibition induces ROS-mediated apoptosis in PDAC and LGSOC cells with KRAS mutations, but not in cells with wild-type KRAS, by downregulating NFE2L2/Nrf2 transcription, reducing antioxidants, and inducing oxidative stress.
View Article and Find Full Text PDFis an imprinted tumor suppressor gene encoding a GTPase that has a distinctive N-terminal extension (NTE) not found in other RAS proteins. This NTE and the prenylated C-terminus are required for DIRAS3-mediated inhibition of RAS/MAP signaling and PI3K activity at the plasma membrane. In this study, we applied biochemical, biophysical, and computational methods to characterize the structure and function of the NTE.
View Article and Find Full Text PDFTP53 is the most commonly mutated gene in cancer and has been shown to form amyloid-like aggregates, similar to key proteins in neurodegenerative diseases. Nonetheless, the clinical implications of p53 aggregation remain unclear. Here, we investigated the presence and clinical relevance of p53 aggregates in serous ovarian cancer (OC).
View Article and Find Full Text PDFImportance: Despite similar histologic appearance among high-grade serous ovarian cancers (HGSOCs), clinical observations suggest vast differences in gross appearance. There is currently no systematic framework by which to classify HGSOCs according to their gross morphologic characteristics.
Objective: To develop and characterize a gross morphologic classification system for HGSOC.
Purpose: To assess the contributions of circulating metabolites for improving upon the performance of the risk of ovarian malignancy algorithm (ROMA) for risk prediction of ovarian cancer among women with ovarian cysts.
Experimental Design: Metabolomic profiling was performed on an initial set of sera from 101 serous and nonserous ovarian cancer cases and 134 individuals with benign pelvic masses (BPM). Using a deep learning model, a panel consisting of seven cancer-related metabolites [diacetylspermine, diacetylspermidine, N-(3-acetamidopropyl)pyrrolidin-2-one, N-acetylneuraminate, N-acetyl-mannosamine, N-acetyl-lactosamine, and hydroxyisobutyric acid] was developed for distinguishing early-stage ovarian cancer from BPM.
The LC3/GABARAP family of proteins is involved in nearly every stage of autophagy. Inhibition of LC3/GABARAP proteins is a promising approach to blocking autophagy, which sensitizes advanced cancers to DNA-damaging chemotherapy. Here, we report the structure-based design of stapled peptides that inhibit GABARAP with nanomolar affinities.
View Article and Find Full Text PDFBackground: Individual serum biomarkers are neither adequately sensitive nor specific for use in screening the general population for ovarian cancer. The purpose of this study was to develop a multiprotein classifier to detect the early stages of ovarian cancer, when it is most treatable.
Methods: The Olink Proseek Multiplex Oncology II panel was used to simultaneously quantify the expression levels of 92 cancer-related proteins in sera.
Poly(ADP-ribose) polymerase inhibitors (PARP inhibitors) have had an increasing role in the treatment of ovarian and breast cancers. PARP inhibitors are selectively active in cells with homologous recombination DNA repair deficiency caused by mutations in BRCA1/2 and other DNA repair pathway genes. Cancers with homologous recombination DNA repair proficiency respond poorly to PARP inhibitors.
View Article and Find Full Text PDFTherapeutic monoclonal antibodies directed against PD-L1 (e.g., atezolizumab) disrupt PD-L1:PD-1 signaling and reactivate exhausted cytotoxic T-cells in the tumor compartment.
View Article and Find Full Text PDFLipid-based formulations provide a nanotechnology platform that is widely used in a variety of biomedical applications because it has several advantageous properties including biocompatibility, reduced toxicity, relative ease of surface modifications, and the possibility for efficient loading of drugs, biologics, and nanoparticles. A combination of lipid-based formulations with magnetic nanoparticles such as iron oxide was shown to be highly advantageous in a growing number of applications including magnet-mediated drug delivery and image-guided therapy. Currently, lipid-based formulations are prepared by multistep protocols.
View Article and Find Full Text PDFBackground: The measurement of serum HE4 levels has emerged as a sensitive and specific biomarker for epithelial ovarian cancers (EOCs). However, serum levels in women diagnosed with various histologic subtypes of EOC and in women with metastatic non-ovarian primary malignancies have not been widely reported.
Objective: The goal of this study was to identify how serum HE4 levels vary in women diagnosed with different histologic subtypes of EOC and non-ovarian malignancies.
A recent ovarian cancer screening trial found no reduction in mortality, despite increased detection of early stage disease. Here, we discuss these findings and examine next steps to develop more effective approaches for the early detection of ovarian cancer.
View Article and Find Full Text PDFDIRAS3 is an imprinted tumor suppressor gene that encodes a 26 kDa GTPase with 60% amino acid homology to RAS, but with a distinctive 34 amino acid N-terminal extension required to block RAS function. DIRAS3 is maternally imprinted and expressed only from the paternal allele in normal cells. Loss of expression can occur in a single "hit" through multiple mechanisms.
View Article and Find Full Text PDFTo understand the role of polyploid giant cancer cells (PGCCs) in drug resistance and disease relapse, we examined the mRNA expression profile of PGCCs following treatment with paclitaxel in ovarian cancer cells. An acute activation of IL-6 dominated senescence-associated secretory phenotype lasted 2-3 weeks and declined during the termination phase of polyploidy. IL-6 activates embryonic stemness during the initiation of PGCCs and can reprogram normal fibroblasts into cancer-associated fibroblasts (CAFs) via increased collagen synthesis, activation of VEGF expression, and enrichment of CAFs and the GPR77 + /CD10 + fibroblast subpopulation.
View Article and Find Full Text PDFIn epithelial ovarian cancer (EOC), carboplatin/cisplatin-induced chemoresistance is a major hurdle to successful treatment. Aerobic glycolysis is a common characteristic of cancer. However, the role of glycolytic metabolism in chemoresistance and its impact on clinical outcomes in EOC are not clear.
View Article and Find Full Text PDFIn recent decades it has become increasingly clear that induction of autophagy plays an important role in the development of treatment resistance and dormancy in many cancer types. Unfortunately, chloroquine (CQ) and hydroxychloroquine (HCQ), two autophagy inhibitors in clinical trials, suffer from poor pharmacokinetics and high toxicity at therapeutic dosages. This has prompted intense interest in the development of targeted autophagy inhibitors to re-sensitize disease to treatment with minimal impact on normal tissue.
View Article and Find Full Text PDF