Publications by authors named "Robert Bambara"

DNA polymerase delta is the primary polymerase that is involved in undamaged nuclear lagging strand DNA replication. Our mass-spectroscopic analysis has revealed that the human DNA polymerase δ is acetylated on subunits p125, p68, and p12. Using substrates that simulate Okazaki fragment intermediates, we studied alterations in the catalytic properties of acetylated polymerase and compared it to the unmodified form.

View Article and Find Full Text PDF

Altered telomere maintenance mechanism (TMM) is linked to increased DNA damage at telomeres and telomere uncapping. We previously showed that HIV-1 latent cells have altered TMM and are susceptible to ligands that target G-quadruplexes (G4) at telomeres. Susceptibility of latent cells to telomere targeting could potentially be used to support approaches to eradicate HIV reservoirs.

View Article and Find Full Text PDF

Human adenovirus (AdV) can cause fatal disease in immune-suppressed individuals, but treatment options are limited, in part because the antiviral cytidine analog cidofovir (CDV) is nephrotoxic. The investigational agent brincidofovir (BCV) is orally bioavailable, nonnephrotoxic, and generates the same active metabolite, cidofovir diphosphate (CDVpp). However, its mechanism of action against AdV is poorly understood.

View Article and Find Full Text PDF

Background: A cluster randomised trial (CRT) in Burkina Faso was the first to demonstrate that a radio campaign increased health-seeking behaviours, specifically antenatal care attendance, health facility deliveries and primary care consultations for children under 5 years.

Methods: Under-five consultation data by diagnosis was obtained from primary health facilities in trial clusters, from January 2011 to December 2014. Interrupted time-series analyses were conducted to assess the intervention effect by time period on under-five consultations for separate diagnosis categories that were targeted by the media campaign.

View Article and Find Full Text PDF
Article Synopsis
  • A study was conducted in rural Burkina Faso to evaluate the impact of a radio campaign targeting family behaviors on reducing under-5 child mortality, combining outreach with health promotion strategies.
  • The research used a cluster randomised trial design, assigning geographical areas with high radio listenership to either receive the radio campaign or serve as a control, measuring effects through household surveys over several years.
  • Findings aimed to show a significant reduction (20%) in child mortality rates as a result of the campaign, with additional analysis on health service usage indicators for comprehensive understanding of the intervention's effects.
View Article and Find Full Text PDF

Viruses can interact with host cell molecules responsible for the recognition and repair of DNA lesions, resulting in dysfunctional DNA damage response (DDR). Cells with inefficient DDR are more vulnerable to therapeutic approaches that target DDR, thereby raising DNA damage to a threshold that triggers apoptosis. Here, we demonstrate that 2 Jurkat-derived cell lines with incorporated silent HIV-1 provirus show increases in DDR signaling that responds to formation of double strand DNA breaks (DSBs).

View Article and Find Full Text PDF

The p300-mediated acetylation of enzymes involved in DNA repair and replication has been previously shown to stimulate or inhibit their activities in reconstituted systems. To explore the role of acetylation on DNA repair in cells we constructed plasmid substrates carrying inactivating damages in the EGFP reporter gene, which should be repaired in cells through DNA mismatch repair (MMR) or base excision repair (BER) mechanisms. We analyzed efficiency of repair within these plasmid substrates in cells exposed to deacetylase and acetyltransferase inhibitors, and also in cells deficient in p300 acetyltransferase.

View Article and Find Full Text PDF

Background: In Burkina Faso, a comprehensive 35-month radio campaign addressed key, multiple family behaviors for improving under-5 child survival and was evaluated using a repeated cross-sectional, cluster randomized design. The primary outcome of the trial was postneonatal under-5 child mortality. This paper reports on behavior change achieved at midline.

View Article and Find Full Text PDF

Genomic regions rich in G residues are prone to adopt G-quadruplex structure. Multiple Sp1-binding motifs arranged in tandem have been suggested to form this structure in promoters of cancer-related genes. Here, we demonstrate that the G-rich proviral DNA sequence of the HIV-1 U3 region, which serves as a promoter of viral transcription, adopts a G-quadruplex structure.

View Article and Find Full Text PDF

SAMHD1 (SAM domain- and HD domain-containing protein 1) is a dGTP-dependent dNTP triphosphohydrolase that converts dNTPs into deoxyribonucleosides and triphosphates. Therefore, SAMHD1 expression, particularly in non-dividing cells, can restrict retroviral infections such as HIV and simian immunodeficiency virus by limiting cellular dNTPs, which are essential for reverse transcription. It has previously been established that dGTP acts as both an activator and a substrate of this enzyme, suggesting that phosphohydrolase activity of SAMHD1 is regulated by dGTP availability in the cell.

View Article and Find Full Text PDF

The genome of HIV-1 consists of two identical or nearly identical RNA molecules. The RNA genomes are held in the same, parallel orientation by interactions at the dimer initiation site (DIS). Previous studies showed that in addition to interactions at DIS, sequences located 100 nucleotides downstream from the 5' splice site can dimerize in vitro through an intermolecular G-quartet structure.

View Article and Find Full Text PDF

Efavirenz is a non-nucleoside reverse transcriptase inhibitor used for treating HIV/AIDS. We found that polymerization activity of a reverse transcriptase (RT) with the E478Q mutation that inactivates the RNase H catalytic site is much more sensitive to efavirenz than wild-type RT, indicating that a functional RNase H attenuates the effectiveness of efavirenz. Moreover, efavirenz actually stimulated wild-type RNase H binding and catalytic functions, indicating another link between efavirenz action and RNase H function.

View Article and Find Full Text PDF

Previous work by our group showed that human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) containing non-nucleoside RT inhibitor (NNRTI) drug resistance mutations has defects in RNase H activity as well as reduced amounts of RT protein in virions. These deficits correlate with replication fitness in the absence of NNRTIs. Viruses with the mutant combination K101E+G190S replicated better in the presence of NNRTIs than in the absence of drug.

View Article and Find Full Text PDF

Newly identified anti-HIV host factor, SAMHD1, restricts replication of lentiviruses such as HIV-1, HIV-2, and simian immunodeficiency virus in macrophages by enzymatically hydrolyzing and depleting cellular dNTPs, which are the substrates of viral DNA polymerases. HIV-2 and some simian immunodeficiency viruses express viral protein X (VPX), which counteracts SAMHD1 and elevates cellular dNTPs, enhancing viral replication in macrophages. Because nucleoside reverse transcriptase inhibitors (NRTIs), the most commonly used anti-HIV drugs, compete against cellular dNTPs for incorporation into proviral DNA, we tested whether SAMHD1 directly affects the efficacy of NRTIs in inhibiting HIV-1.

View Article and Find Full Text PDF

The fitness of non-nucleoside reverse transcriptase inhibitor (NNRTI) drug-resistant reverse transcriptase (RT) mutants of HIV-1 correlates with the amount of RT in the virions and the RNase H activity of the RT. We wanted to understand the mechanism by which secondary NNRTI-resistance mutations, L100I and K101E, and the nucleoside resistance mutation, L74V, alter the fitness of K103N and G190S viruses. We measured the amount of RT in virions and the polymerization and RNase H activities of mutant RTs compared to wild-type, K103N and G190S.

View Article and Find Full Text PDF

First discovered as a structure-specific endonuclease that evolved to cut at the base of single-stranded flaps, flap endonuclease (FEN1) is now recognized as a central component of cellular DNA metabolism. Substrate specificity allows FEN1 to process intermediates of Okazaki fragment maturation, long-patch base excision repair, telomere maintenance, and stalled replication fork rescue. For Okazaki fragments, the RNA primer is displaced into a 5' flap and then cleaved off.

View Article and Find Full Text PDF
Okazaki fragment metabolism.

Cold Spring Harb Perspect Biol

February 2013

Cellular DNA replication requires efficient copying of the double-stranded chromosomal DNA. The leading strand is elongated continuously in the direction of fork opening, whereas the lagging strand is made discontinuously in the opposite direction. The lagging strand needs to be processed to form a functional DNA segment.

View Article and Find Full Text PDF

Trinucleotide repeat (TNR) expansions are the underlying cause of more than 40 neurodegenerative and neuromuscular diseases, including myotonic dystrophy and Huntington's disease. Although genetic evidence points to errors in DNA replication and/or repair as the cause of these diseases, clear molecular mechanisms have not been described. Here, we focused on the role of the mismatch repair complex Msh2-Msh3 in promoting TNR expansions.

View Article and Find Full Text PDF

In eukaryotic Okazaki fragment processing, the RNA primer is displaced into a single-stranded flap prior to removal. Evidence suggests that some flaps become long before they are cleaved, and that this cleavage involves the sequential action of two nucleases. Strand displacement characteristics of the polymerase show that a short gap precedes the flap during synthesis.

View Article and Find Full Text PDF

Macrophages are well known long-lived reservoirs of HIV-1. Unlike activated CD4(+) T cells, this nondividing HIV-1 target cell type contains a very low level of the deoxynucleoside triphosphates (dNTPs) required for proviral DNA synthesis whereas the ribonucleoside triphosphate (rNTP) levels remain in the millimolar range, resulting in an extremely low dNTP/rNTP ratio. Biochemical simulations demonstrate that HIV-1 reverse transcriptase (RT) efficiently incorporates ribonucleoside monophosphates (rNMPs) during DNA synthesis at this ratio, predicting frequent rNMP incorporation by the virus specifically in macrophages.

View Article and Find Full Text PDF

Human telomeres consist of multiple tandem hexameric repeats, each containing a guanine triplet. Guanosine-rich clusters are highly susceptible to oxidative base damage, necessitating base excision repair (BER). Previous demonstration of enhanced strand displacement synthesis by the BER component DNA polymerase β in the presence of telomere protein TRF2 suggests that telomeres employ long-patch (LP) BER.

View Article and Find Full Text PDF

Prolonged highly active anti-retroviral therapy with multiple nucleoside reverse transcriptase inhibitors for the treatment of patients infected with human immunodeficiency virus type 1 (HIV-1) can induce the development of an HIV-1 reverse transcriptase (RT) harboring a dipeptide insertion at the RT fingers domain with a background thymidine analog mutation. This mutation renders viral resistance to multiple nucleoside reverse transcriptase inhibitors. We investigated the effect of the dipeptide fingers domain insertion mutation on strand transfer activity using two clinical RT variants isolated during the pre-treatment and post-treatment of an infected patient, termed pre-drug RT without dipeptide insertion and post-drug RT with Ser-Gly insertion, respectively.

View Article and Find Full Text PDF

Nonnucleoside reverse transcriptase inhibitors (NNRTIs) are potent and commonly prescribed antiviral agents used in combination therapy (CART) of human immunodeficiency virus type 1 (HIV-1) infection. The development of drug resistance is a major limitation of CART. Reverse transcriptase (RT) genotypes with the NNRTI resistance mutations K101E+G190S are highly resistant to efavirenz (EFV) and can develop during failure of EFV-containing regimens in patients.

View Article and Find Full Text PDF

Steps in the replication of human immunodeficiency virus type 1 (HIV-1) occurring in the virus but not in the host are preferred targets of antiretroviral therapy. Strand transfer is unique; the DNA strand being made by viral reverse transcriptase (RT) is moved from one RNA template position to another. Understanding the mechanism requires knowing whether the RT directly mediates the template exchange or dissociates during the exchange, so that it occurs by polymer dynamics.

View Article and Find Full Text PDF