Publications by authors named "Robert Baldock"

is one of the most common bacteria causing contact lens-related microbial keratitis (CLMK). Previous studies report that disinfecting solutions were ineffective in preventing biofilm formation. Solutions containing novel natural agents may be an excellent alternative for reducing the risk of CLMK.

View Article and Find Full Text PDF

The rise of multidrug resistance of highlights an increased need for selective and precise antimicrobial treatment. Drug efflux pumps are one of the major mechanisms of antimicrobial resistance found in many bacteria, including . .

View Article and Find Full Text PDF

Hydroquinine has antimicrobial potential with demonstrated activity against several bacteria, including multidrug-resistant (MDR) reference strains. Despite this, there is limited evidence confirming the antibacterial activity of hydroquinine against clinical isolates and the underlying mechanism of action. Here, we aimed to investigate the antibacterial effect of hydroquinine in clinical strains using phenotypic antimicrobial susceptibility testing and synergistic testing.

View Article and Find Full Text PDF

Introduction: Fluoroquinolone (FQ) antibiotics were approved in 1986 for treatment of urinary tract infections, sinusitis, and bronchitis. Numerous putative FQ-associated adverse events have been recently reported.

Areas Covered: We review international regulatory agency experience with these FQ-associated toxicities.

View Article and Find Full Text PDF

Hydroquinine is an organic alkaloid compound that exhibits antimicrobial activity against several bacterial strains including strains of both drug-sensitive and multidrug-resistant P. aeruginosa. Despite this, the effects of hydroquinine on virulence factors in P.

View Article and Find Full Text PDF

Hydroquinine is an organic compound that is closely related to quinine-derivative drugs and contains anti-malarial and anti-arrhythmia activities. It has been also found in abundance in some natural extracts that possess antibacterial properties. However, there is little evidence demonstrating the antibacterial effect of hydroquinine.

View Article and Find Full Text PDF

Mitochondria are highly specialised organelles required for key cellular processes including ATP production through cellular respiration and controlling cell death via apoptosis. Unlike other organelles, mitochondria contain their own DNA genome which encodes both protein and RNA required for cellular respiration. Each cell may contain hundreds to thousands of copies of the mitochondrial genome, which is essential for normal cellular function - deviation of mitochondrial DNA (mtDNA) copy number is associated with cellular ageing and disease.

View Article and Find Full Text PDF

RAD51 paralog gene mutations are observed in both hereditary breast and ovarian cancers. Classically, defects in RAD51 paralog function are associated with homologous recombination (HR) deficiency and increased genomic instability. Several recent investigative advances have enabled characterization of non-canonical RAD51 paralog function during DNA replication.

View Article and Find Full Text PDF

DNA repair is critical for genome stability and is maintained through conserved pathways. Traditional genome-wide mammalian screens are both expensive and laborious. However, computational approaches circumvent these limitations and are a powerful tool to identify new DNA repair factors.

View Article and Find Full Text PDF

Coordination of the cellular response to DNA damage is organised by multi-domain 'scaffold' proteins, including 53BP1 and TOPBP1, which recognise post-translational modifications such as phosphorylation, methylation and ubiquitylation on other proteins, and are themselves carriers of such regulatory signals. Here we show that the DNA damage checkpoint regulating S-phase entry is controlled by a phosphorylation-dependent interaction of 53BP1 and TOPBP1. BRCT domains of TOPBP1 selectively bind conserved phosphorylation sites in the N-terminus of 53BP1.

View Article and Find Full Text PDF

The proficiency of cancer cells to repair DNA double-strand breaks (DSBs) by homologous recombination (HR) is a key determinant in predicting response to targeted therapies such as PARP inhibitors. The RAD51 paralogs work as multimeric complexes and act downstream of BRCA1 to facilitate HR. Numerous epidemiological studies have linked RAD51 paralog mutations with hereditary cancer predisposition.

View Article and Find Full Text PDF

The error-free and efficient repair of DNA double-stranded breaks (DSBs) is extremely important for cell survival. RNA has been implicated in the resolution of DNA damage but the mechanism remains poorly understood. Here, we show that miRNA biogenesis enzymes, Drosha and Dicer, control the recruitment of repair factors from multiple pathways to sites of damage.

View Article and Find Full Text PDF

The nested sampling algorithm has been shown to be a general method for calculating the pressure-temperature-composition phase diagrams of materials. While the previous implementation used single-particle Monte Carlo moves, these are inefficient for condensed systems with general interactions where single-particle moves cannot be evaluated faster than the energy of the whole system. Here we enhance the method by using all-particle moves: either Galilean Monte Carlo or the total enthalpy Hamiltonian Monte Carlo algorithm, introduced in this paper.

View Article and Find Full Text PDF

The opposing activities of 53BP1 and BRCA1 influence pathway choice in DNA double-strand-break repair. How BRCA1 counteracts the inhibitory effect of 53BP1 on DNA resection and homologous recombination is unknown. Here we identify the site of BRCA1-BARD1 required for priming ubiquitin transfer from E2∼ubiquitin and demonstrate that BRCA1-BARD1's ubiquitin ligase activity is required for repositioning 53BP1 on damaged chromatin.

View Article and Find Full Text PDF

Regulation of protein synthesis is crucial for cells to maintain viability and to prevent unscheduled proliferation that could lead to tumorigenesis. Exposure to stress results in stalling of translation, with many translation initiation factors, ribosomal subunits and mRNAs being sequestered into stress granules or P bodies. This allows the re-programming of the translation machinery.

View Article and Find Full Text PDF

53BP1 plays multiple roles in mammalian DNA damage repair, mediating pathway choice and facilitating DNA double-strand break repair in heterochromatin. Although it possesses a C-terminal BRCT2 domain, commonly involved in phospho-peptide binding in other proteins, initial recruitment of 53BP1 to sites of DNA damage depends on interaction with histone post-translational modifications--H4K20me2 and H2AK13/K15ub--downstream of the early γH2AX phosphorylation mark of DNA damage. We now show that, contrary to current models, the 53BP1-BRCT2 domain binds γH2AX directly, providing a third post-translational mark regulating 53BP1 function.

View Article and Find Full Text PDF

Regulation of protein synthesis is of fundamental importance to cells. It has a critical role in the control of gene expression, and consequently cell growth and proliferation. The importance of this control is supported by the fact that protein synthesis is frequently upregulated in tumor cells.

View Article and Find Full Text PDF

SUMO is a small post-translational modifier, that is attached to lysine residues in target proteins. It acts by altering protein-protein interactions, protein localisation and protein activity. SUMO chains can also act as substrates for ubiquitination, resulting in proteasome-mediated degradation of the target protein.

View Article and Find Full Text PDF