Micromachines (Basel)
April 2024
ACS Appl Mater Interfaces
June 2019
We have investigated the impact of the ink formulation on the properties of an inkjet-printed small molecular mixed host in a phosphorescent organic light-emitting diode (PhOLED). Host solubility, film roughness, and device efficiency improved by blending tris(4-carbazoyl-9-ylphenyl)amine (TCTA) with pyrido[3',2':4,5]furo[2,3- b]pyridine (3CzPFP). At a host ratio of 60:40 (TCTA/3CzPFP), the brightness increased by 33%, the efficiency roll-off at 1000 cd/m dropped to well below 10%, and the luminance half-lifetime (LT) improved by 80% in comparison to the device with a single host (100% TCTA).
View Article and Find Full Text PDFIn this study, micropatterning of a blue light emitting, tetraphenylsilane-based phosphorescent material by inkjet printing was investigated. Bis(3,5-di(9-carbazol-9-yl))diphenylsilane (SimCP2) doped with iridium bis(4,6-difluorophenypyridinato)picolate (FIrpic) was dissolved in a solvent mixture, and various conditions for the solvent composition and drying of films were examined. Homogeneous dot and line patterns with controllable thickness and smooth surface were obtained from a mixture of chlorobenzene and cyclohexanone at a moderate printing speed of 3 mm s and a droplet ejection frequency of 70 Hz.
View Article and Find Full Text PDFElectrospinning is a common technique used to fabricate fibrous scaffolds for tissue engineering applications. There is now growing interest in assessing the ability of collector plate design to influence the patterning of the fibres during the electrospinning process. In this study, we investigate a novel method to generate hybrid electrospun scaffolds consisting of both random fibres and a defined three-dimensional (3D) micro-topography at the surface, using patterned resin formers produced by rapid prototyping (RP).
View Article and Find Full Text PDF