Glioblastoma (GBM) is the most complex and lethal primary brain cancer. Adequate drug diffusion and penetration are essential for treating GBM, but how the spatial heterogeneity in GBM impacts drug diffusion and transport is poorly understood. Herein, we report a new method, photoactivation of plasmonic nanovesicles (PANO), to measure molecular diffusion in the extracellular space of GBM.
View Article and Find Full Text PDFGlioblastoma (GBM) is the most complex and lethal adult primary brain cancer. Adequate drug diffusion and penetration are essential for treating GBM, but how the spatial heterogeneity in GBM impacts drug diffusion and transport is poorly understood. Herein, we report a new method, photoactivation of plasmonic nanovesicles (PANO), to measure molecular diffusion in the extracellular space of GBM.
View Article and Find Full Text PDFLive imaging of the brain extracellular matrix (ECM) provides vital insights into changes that occur in neurological disorders. Current techniques such as second or third-harmonic generation offer limited contrast for live imaging of the brain ECM. Here, a new method, pan-ECM via chemical labeling of extracellular proteins, is introduced for live brain ECM imaging.
View Article and Find Full Text PDFGlioblastomas (GBMs) are highly aggressive, infiltrative, and heterogeneous brain tumors driven by complex driver mutations and glioma stem cells (GSCs). The neurodevelopmental transcription factors ASCL1 and OLIG2 are co-expressed in GBMs, but their role in regulating the heterogeneity and hierarchy of GBM tumor cells is unclear. Here, we show that oncogenic driver mutations lead to dysregulation of ASCL1 and OLIG2, which function redundantly to initiate brain tumor formation in a mouse model of GBM.
View Article and Find Full Text PDFMitochondria (MT) participate in most metabolic activities of mammalian cells. A near-unidirectional mitochondrial transfer from T cells to cancer cells was recently observed to "metabolically empower" cancer cells while "depleting immune cells," providing new insights into tumor-T cell interaction and immune evasion. Here, we leverage single-cell RNA-seq technology and introduce MERCI, a statistical deconvolution method for tracing and quantifying mitochondrial trafficking between cancer and T cells.
View Article and Find Full Text PDFThe treatment of glioblastoma has limited clinical progress over the past decade, partly due to the lack of effective drug delivery strategies across the blood-brain-tumor barrier. Moreover, discrepancies between preclinical and clinical outcomes demand a reliable translational platform that can precisely recapitulate the characteristics of human glioblastoma. Here we analyze the intratumoral blood-brain-tumor barrier heterogeneity in human glioblastoma and characterize two genetically engineered models in female mice that recapitulate two important glioma phenotypes, including the diffusely infiltrative tumor margin and angiogenic core.
View Article and Find Full Text PDFThe brain extracellular matrix (ECM), consisting of proteins and glycosaminoglycans, is a critical scaffold in the development, homeostasis, and disorders of the central nervous system (CNS) and undergoes remodeling in response to environmental cues. Live imaging of brain ECM structure represents a native view of the brain ECM but, until now, remains challenging due to the lack of a robust fluorescent labeling approach. Here, we developed a pan-ECM method for labeling the entire (Greek: pan) brain ECM network by screening and delivering a protein-reactive dye into the brain.
View Article and Find Full Text PDFPurpose: Anaplastic lymphoma kinase (ALK) aberrations have been identified in pediatric-type infant gliomas, but their occurrence across age groups, functional effects, and treatment response has not been broadly established.
Experimental Design: We performed a comprehensive analysis of ALK expression and genomic aberrations in both newly generated and retrospective data from 371 glioblastomas (156 adult, 205 infant/pediatric, and 10 congenital) with in vitro and in vivo validation of aberrations.
Results: ALK aberrations at the protein or genomic level were detected in 12% of gliomas (45/371) in a wide age range (0-80 years).
The blood-brain barrier (BBB) maintains an optimal environment for brain homeostasis but excludes most therapeutics from entering the brain. Strategies that reversibly increase BBB permeability are essential for treating brain diseases and are the focus of significant preclinical and translational interest. Picosecond laser excitation of tight junction-targeted gold nanoparticles (AuNPs) generates a nanoscale mechanical perturbation and induces a graded and reversible increase in BBB permeability (OptoBBB).
View Article and Find Full Text PDFEnhanced understanding of the molecular features of glioma has led to an expansion of murine glioma models and successful preclinical studies. However, clinical trials continue to have a high cost, extended production time, and low proportion of success. Studies in large-animal models of various cancer types have emerged to bridge the translational gap between in vitro and in vivo animal studies and human clinical trials.
View Article and Find Full Text PDFThe blood-brain barrier (BBB) is highly selective and acts as the interface between the central nervous system and circulation. While the BBB is critical for maintaining brain homeostasis, it represents a formidable challenge for drug delivery. Here we synthesized gold nanoparticles (AuNPs) for targeting the tight junction specifically and demonstrated that transcranial picosecond laser stimulation of these AuNPs post intravenous injection increases the BBB permeability.
View Article and Find Full Text PDFBackground: We postulate that meningiomas undergo distinct metabolic reprogramming in tumorigenesis and unraveling their metabolic phenotypes provide new therapeutic insights. Glutamine catabolism is key to the growth and proliferation of tumors. Here, we investigated the metabolomics of freshly resected meningiomas and glutamine metabolism in patient-derived meningioma cells.
View Article and Find Full Text PDFTransient disruption of the blood-brain barrier (BBB) with focused ultrasound (FUS) is an emerging clinical method to facilitate targeted drug delivery to the brain. The focal noninvasive disruption of the BBB can be applied to promote the local delivery of hyperpolarized substrates. In this study, we investigated the effects of FUS on imaging brain metabolism using two hyperpolarized C-labeled substrates in rodents: [1-C]pyruvate and [1-C]glycerate.
View Article and Find Full Text PDFSince the discovery of nucleotides over 100 years ago, extensive studies have revealed the importance of nucleotides for homeostasis, health and disease. However, there remains no established method to investigate quantitatively and accurately intact nucleotide incorporation into RNA and DNA. Herein, we report a new method, Stable-Isotope Measure Of Influxed Ribonucleic Acid Index (SI-MOIRAI), for the identification and quantification of the metabolic fate of ribonucleotides and their precursors.
View Article and Find Full Text PDFUsing a microfluidic platform to apply negative aspiration pressure (-20, -25, -30, -35 and -40 cm HO), we compared the differences in creep responses of Glioblastoma Multiforme (GBM) cells while migrating in confinement and at a stationary state on a 2D substrate. Cells were either migrating in a channel of 5 x 5 μm cross-section or stationary at the entrance to the channel. In response to aspiration pressure, we found actively migrating GBM cells exhibited a higher stiffness than stationary cells.
View Article and Find Full Text PDFPrevious studies have demonstrated that the synaptic EphB1 receptor tyrosine kinase is a major mediator of neuropathic pain, suggesting that targeting the activity of this receptor might be a viable therapeutic option. Therefore, we set out to determine if any FDA-approved drugs can act as inhibitors of the EphB1 intracellular catalytic domain. An in silico screen was first used to identify a number of tetracycline antibiotics which demonstrated potential docking to the ATP-binding catalytic domain of EphB1.
View Article and Find Full Text PDFGlioblastomas (GBMs) are incurable brain tumors with a high degree of cellular heterogeneity and genetic mutations. Transcription factors that normally regulate neural progenitors and glial development are aberrantly coexpressed in GBM, conferring cancer stem-like properties to drive tumor progression and therapeutic resistance. However, the functional role of individual transcription factors in GBMs in vivo remains elusive.
View Article and Find Full Text PDFEmerging evidence suggests that crosstalk between glioma cells and the brain microenvironment may influence brain tumor growth. To date, known reciprocal interactions among these cells have been limited to the release of paracrine factors. Combining a genetic strategy with longitudinal live imaging, we find that individual gliomas communicate with distinct sets of non-glioma cells, including glial cells, neurons, and vascular cells.
View Article and Find Full Text PDFThe mechanics of the cellular microenvironment continuously modulates cell functions such as growth, survival, apoptosis, differentiation and morphogenesis via cytoskeletal remodelling and actomyosin contractility. Although all of these processes consume energy, it is unknown whether and how cells adapt their metabolic activity to variable mechanical cues. Here we report that the transfer of human bronchial epithelial cells from stiff to soft substrates causes a downregulation of glycolysis via proteasomal degradation of the rate-limiting metabolic enzyme phosphofructokinase (PFK).
View Article and Find Full Text PDF