A series of ring-expanded ("fat") nucleoside analogues (RENs) containing the 6-aminoimidazo[4,5-e][1,3]diazepine-4,8-dione ring system have been synthesized and screened for inhibition of NTPase/helicase of the West Nile Virus (WNV). To assess the selectivity of RENs against the viral enzymes, a truncated form of human enzyme Suv3((Delta)(1)(-)(159)) was also included in the study. Ring-expanded nucleosides 16, 17, and 19, which possess the long C(12), C(14), and C(18) side-chains, respectively, at position 6, as well as the ring-expanded heterocycle 39, which contains aralkyl substitution at position 1, were all found to have excellent profiles of activity and selectivity toward the viral versus human enzymes against the West Nile Virus (IC(50) ranging 1-10 muM).
View Article and Find Full Text PDFThe synthesis and in vitro anti-measles virus (anti-MV) activity of a class of ring-expanded ('fat') nucleoside analogues (1-4) containing the title heterocyclic ring system are reported. The target compounds were synthesized by base-catalyzed condensations of 4,5-dicarboxylic acid esters of the appropriately substituted imidazole-1-ribosides with suitably substituted guanidine derivatives. Compounds were screened for anti-MV activity in African green monkey kidney cells (CV-1), employing ribavirin as the control standard.
View Article and Find Full Text PDFNovel ring-expanded nucleoside (REN) analogs (1-3) containing 5:7 fused ring systems as the heterocyclic base were found to be potent and selective inhibitors of hepatitis B virus (HBV) replication in cultured human hepatoblastoma 2.2.15 cells.
View Article and Find Full Text PDF