Alkali-stable quaternary phosphonium (QP) is a type of cationic group for hydroxide exchange membranes (HEMs). To elucidate the relationship between structure and alkaline stability, we investigated the kinetics and degradation mechanism of a series of QP cations by both experiment and computation, and established a semi-empirical formula based on the Taft equation to directly estimate alkaline stability of QP cations from the P NMR chemical shift and the steric substituent constant , facilitating the search for QP cations with improved alkaline stability.
View Article and Find Full Text PDFHighly alkali-stable cationic groups are a critical component of hydroxide exchange membranes (HEMs). To search for such cations, we studied the degradation kinetics and mechanisms of a series of quaternary phosphonium (QP) cations. Benzyl tris(2,4,6-trimethoxyphenyl)phosphonium [BTPP-(2,4,6-MeO)] was determined to have higher alkaline stability than the benchmark cation, benzyl trimethylammonium (BTMA).
View Article and Find Full Text PDFHydroxide (OH(-))-exchange membranes (HEMs) are important polymer electrolytes enabling the use of affordable and earth-abundant electrocatalysts for electrochemical energy-conversion devices such as HEM fuel cells, HEM electrolyzers, and HEM solar hydrogen generators. Many HEM cations exist, featuring desirable properties, but new cations are still needed to increase chemical stability at elevated temperatures. Here we introduce the permethyl cobaltocenium [(C5Me5)2Co(III)(+) or Cp(*)2Co(+)] as an ultra-stable organic cation for polymer HEMs.
View Article and Find Full Text PDFThree-dimensional porous crystalline polyimide covalent organic frameworks (termed PI-COFs) have been synthesized. These PI-COFs feature non- or interpenetrated structures that can be obtained by choosing tetrahedral building units of different sizes. Both PI-COFs show high thermal stability (>450 °C) and surface area (up to 2403 m(2) g(-1)).
View Article and Find Full Text PDFCovalent organic frameworks (COFs) are an emerging class of porous crystalline polymers with a wide variety of applications. They are currently synthesized through only a few chemical reactions, limiting the access and exploitation of new structures and properties. Here we report that the imidization reaction can be used to prepare a series of polyimide (PI) COFs with pore size as large as 42 × 53 Å(2), which is among the largest reported to date, and surface area as high as 2,346 m(2) g(-1), which exceeds that of all amorphous porous PIs and is among the highest reported for two-dimensional COFs.
View Article and Find Full Text PDFStable and able: The hydroxide-conducting cationic functional group used in the hydroxide-exchange membranes of fuel cells is key to controlling chemical stability and solubility. A new imidazolium cation, 1,4,5-trimethyl-2-(2,4,6-trimethoxyphenyl)imidazolium, is designed to take advantage of both strong electron-donation properties and steric hindrance. Synergy between these two effects leads to an efficient hydroxide-exchange membrane, with increased alkaline stability and improved OH(-) conductivity.
View Article and Find Full Text PDF