Background Chromosomal microarray analysis (CMA) provides an opportunity to understand genetic causes of congenital heart disease (CHD). The methods for describing cardiac phenotypes in patients with CMA abnormalities have been inconsistent, which may complicate clinical interpretation of abnormal testing results and hinder a more complete understanding of genotype-phenotype relationships. Methods and Results Patients with CHD and abnormal clinical CMA were accrued from 9 pediatric cardiac centers.
View Article and Find Full Text PDFThoracic aortic aneurysm (TAA) predisposes to sudden, life-threatening aortic dissection. The factors that regulate interindividual variability in TAA severity are not well understood. Identifying a molecular basis for this variability has the potential to improve clinical risk stratification and advance mechanistic insight.
View Article and Find Full Text PDFBackground: Birthweight is a critical predictor of congenital heart disease (CHD) surgical outcomes. Hypoplastic left heart syndrome (HLHS) is cyanotic CHD with known fetal growth restriction and placental abnormalities. Transposition of the great arteries (TGA) is cyanotic CHD with normal fetal growth.
View Article and Find Full Text PDFObjective: To investigate the frequency of genetic diagnoses among infants with critical congenital heart disease (CHD) using a comprehensive cardiovascular genetics approach and to identify genotype-phenotype correlations.
Study Design: A retrospective chart review of patients evaluated by cardiovascular genetics in a pediatric cardiac intensive care unit from 2010 to 2015 was performed. Infants with CHD who were <1 month of age were included.
The mechanisms regulating endothelial cell response to hemodynamic forces required for heart valve development, especially valve remodeling, remain elusive. Tie1, an endothelial specific receptor tyrosine kinase, is up-regulated by oscillating shear stress and is required for lymphatic valve development. In this study, we demonstrate that valvular endothelial Tie1 is differentially expressed in a dynamic pattern predicted by disturbed flow during valve remodeling.
View Article and Find Full Text PDFBackground: Left ventricular noncompaction (LVNC) can occur in isolation or can co-occur with a cardiomyopathy phenotype or cardiovascular malformation. The yield of cardiomyopathy gene panel testing in infants, children, and adolescents with a diagnosis of LVNC is unknown. By characterizing a pediatric population with LVNC, we sought to determine the yield of cardiomyopathy gene panel testing, distinguish the yield of testing for LVNC with or without co-occurring cardiac findings, and define additional factors influencing genetic testing yield.
View Article and Find Full Text PDFAims: Congenital heart defects (CHD) affect almost 1% of all live born children and the number of adults with CHD is increasing. In families where CHD has occurred previously, estimates of recurrence risk, and the type of recurring malformation are important for counselling and clinical decision-making, but the recurrence patterns in families are poorly understood. We aimed to determine recurrence patterns, by investigating the co-occurrences of CHD in 1163 families with known malformations, comprising 3080 individuals with clinically confirmed diagnosis.
View Article and Find Full Text PDFAortic valve (AV) disease involves stiffening of the AV cusp with progression characterized by inflammation, fibrosis, and calcification. Here, we examine the relationship between biomechanical valve function and proteomic changes before and after the development of AV pathology in the Emilin1-/- mouse model of latent AV disease. Biomechanical studies were performed to quantify tissue stiffness at the macro (micropipette) and micro (atomic force microscopy (AFM)) levels.
View Article and Find Full Text PDFThoracic aortic aneurysm (TAA) is a genetic disease predisposing to aortic dissection. It is important to identify the genetic modifiers controlling penetrance and expressivity to improve clinical prognostication. Exome sequencing was performed in 27 subjects with syndromic or familial TAA presenting with extreme phenotypes (15 with severe TAA; 12 with mild or absent TAA).
View Article and Find Full Text PDFHeart failure (HF) is a complex clinical syndrome resulting from diverse primary and secondary causes and shared pathways of disease progression, correlating with substantial mortality, morbidity, and cost. HF in children is most commonly attributable to coexistent congenital heart disease, with different risks depending on the specific type of malformation. Current management and therapy for HF in children are extrapolated from treatment approaches in adults.
View Article and Find Full Text PDFAortic valve disease (AVD) is a common condition with a progressive natural history, and presently, there are no pharmacologic treatment strategies. Elastic fiber fragmentation (EFF) is a hallmark of AVD, and increasing evidence implicates developmental elastic fiber assembly defects. Emilin1 is a glycoprotein necessary for elastic fiber assembly that is present in both developing and mature human and mouse aortic valves.
View Article and Find Full Text PDFBackground: Fetal growth restriction (FGR) is a risk factor for adult cardiovascular disease. Intraplacental gene transfer of human insulin-like growth factor-1 (IGF-1) corrects birth weight in our mouse model of FGR. This study addresses long term effects of FGR on cardiac function and the potential preventive effect of IGF-1.
View Article and Find Full Text PDFPediatric restrictive cardiomyopathy (RCM) is a genetically heterogeneous heart disease with limited therapeutic options. RCM cases are largely idiopathic; however, even within families with a known genetic cause for cardiomyopathy, there is striking variability in disease severity. Although accumulating evidence implicates both gene expression and alternative splicing in development of dilated cardiomyopathy (DCM), there have been no detailed molecular characterizations of underlying pathways dysregulated in RCM.
View Article and Find Full Text PDFBackground: Valvular disease is characterized in part by lipid deposition, but systematic analysis of the patterns of global lipid expression in healthy and diseased valve tissues are unknown. This is due in part to tissue limitations for lipidomic preparations and technologies for evaluating lipid distribution in tissues. The study aim was to examine the application of matrixassisted laser desorption ionization imaging mass spectrometry (MALDI IMS) to the aortic valve during development and disease, as an approach to detect and map lipids and ultimately better understand valve structure and function.
View Article and Find Full Text PDFMarfan syndrome (MFS) and Loeys-Dietz syndrome (LDS) are genetic disorders that affect connective tissue as a result of dysregulated TGF-β signaling. MFS is most frequently caused by mutations in FBN1 whereas Loeys-Dietz syndrome results from mutations in TGFBR1 or TGFBR2. There is substantial inter- and intra-familial phenotypic variability among these disorders, suggesting the presence of genetic modifiers.
View Article and Find Full Text PDFThe aorta is the largest artery in the body, yet processes underlying aortic pathology are poorly understood. The arterial media consists of circumferential layers of elastic lamellae and smooth muscle cells (SMCs), and many arterial diseases are characterized by defective lamellae and excess SMCs; however, a mechanism linking these pathological features is lacking. In this study, we use lineage and genetic analysis, pharmacological inhibition, explant cultures, and induced pluripotent stem cells (iPSCs) to investigate supravalvular aortic stenosis (SVAS) patients and/or elastin mutant mice that model SVAS.
View Article and Find Full Text PDFThoracic aortic aneurysm (TAA) is a genetically heterogeneous disease involving subclinical and progressive dilation of the thoracic aorta, which can lead to life-threatening complications such as dissection or rupture. Genetic testing is important for risk stratification and identification of at risk family members, and clinically available genetic testing panels have been expanding rapidly. However, when past testing results are normal, there is little evidence to guide decision-making about the indications and timing to pursue additional clinical genetic testing.
View Article and Find Full Text PDFObjective: Aortic valve disease, including calcification, affects >2% of the human population and is caused by complex interactions between multiple risk factors, including genetic mutations, the environment, and biomechanics. At present, there are no effective treatments other than surgery, and this is because of the limited understanding of the mechanisms that underlie the condition. Previous work has shown that valve interstitial cells within the aortic valve cusps differentiate toward an osteoblast-like cell and deposit bone-like matrix that leads to leaflet stiffening and calcific aortic valve stenosis.
View Article and Find Full Text PDFCHD is frequently associated with a genetic syndrome. These syndromes often present specific cardiovascular and non-cardiovascular co-morbidities that confer significant peri-operative risks affecting multiple organ systems. Although surgical outcomes have improved over time, these co-morbidities continue to contribute substantially to poor peri-operative mortality and morbidity outcomes.
View Article and Find Full Text PDFBackground: Prosthetic valves currently used in children lack the ability to grow with the patient and often require multiple reoperations. Small intestinal submucosa-derived extracellular matrix (SIS-ECM) has been used successfully as a patch for repair in various tissues, including vessels, valves, and myocardium.
Objectives: This study sought to assess the remodeling potential of a tubular tricuspid valve (TV) bioprosthesis made of SIS-ECM by evaluating its growth, structure, and function in a growing ovine model.
Introduction: Hypoplastic left heart syndrome (HLHS) is a severe cardiovascular malformation (CVM) associated with fetal growth abnormalities. Genetic and environmental factors have been identified that contribute to pathogenesis, but the role of the placenta is unknown. The purpose of this study was to systematically examine the placenta in HLHS with and without growth abnormalities.
View Article and Find Full Text PDF