Invest Ophthalmol Vis Sci
September 2020
Purpose: To study if human embryonic stem cell-derived photoreceptors could survive and function without the support of retinal pigment epithelium (RPE) after transplantation into Royal College of Surgeons rats, a rat model of retinal degeneration caused by RPE dysfunction.
Methods: CSC14 human embryonic stem cells were differentiated into primordial eye structures called retinal organoids. Retinal organoids were analyzed by quantitative PCR and immunofluorescence and compared with human fetal retina.
To combat retinal degeneration, healthy fetal retinal sheets have been successfully transplanted into both rodent models and humans, with synaptic connectivity between transplant and degenerated host retina having been confirmed. In rodent studies, transplants have been shown to restore responses to flashes of light in a region of the superior colliculus corresponding to the location of the transplant in the host retina. To determine the quality and detail of visual information provided by the transplant, visual responsivity was studied here at the level of visual cortex where higher visual perception is processed.
View Article and Find Full Text PDFPurpose: To investigate whether sheets of retina organoids derived from human embryonic stem cells (hESCs) can differentiate, integrate, and improve visual function in an immunodeficient rat model of severe retinal degeneration (RD).
Methods: 3D hESC-derived retina organoids were analyzed by quantitative PCR and immunofluorescence. Sheets dissected from retina organoids (30-65 days of differentiation) were transplanted into the subretinal space of immunodeficient rho S334ter-3 rats.
Loss of photoreceptors and other retinal cells is a common endpoint in retinal degenerate (RD) diseases that cause blindness. Retinal transplantation is a potential therapy to replace damaged retinal cells and improve vision. In this study, we examined the development of human fetal retinal sheets with or without their retinal pigment epithelium (RPE) transplanted to immunodeficient retinal degenerate rho S334ter-3 rats.
View Article and Find Full Text PDFPurpose: To characterize a recently developed model, the retinal degenerate immunodeficient S334ter line-3 rat (SD-Foxn1 Tg(S334ter)3Lav) (RD nude rat), and to test whether transplanted rat fetal retinal sheets can elicit lost responses to light.
Methods: National Institutes of Health nude rats (SD-Foxn1 Tg) with normal retina were compared to RD nude rats with and without transplant for morphology and visual function. Retinal sheets from transgenic rats expressing human placental alkaline phosphatase (hPAP) were transplanted into the subretinal space of RD nude rats between postnatal day (P) 26 and P38.
Purpose: The goal of this study was to develop an immunodeficient rat model of retinal degeneration (RD nude rats) that will not reject transplanted human cells.
Methods: SD-Tg(S334ter)3Lav females homozygous for a mutated mouse rhodopsin transgene were mated with NTac:NIH-Whn (NIH nude) males homozygous for the Foxn1 (rnu) allele. Through selective breeding, a new stock, SD-Foxn1 Tg(S334ter)3Lav (RD nude) was generated such that all animals were homozygous for the Foxn1 (rnu) allele and either homo- or hemizygous for the S334ter transgene.
Prog Retin Eye Res
November 2012
Retinal diseases such as age-related macular degeneration (ARMD) and retinitis pigmentosa (RP) affect millions of people. Replacing lost cells with new cells that connect with the still functional part of the host retina might repair a degenerating retina and restore eyesight to an unknown extent. A unique model, subretinal transplantation of freshly dissected sheets of fetal-derived retinal progenitor cells, combined with its retinal pigment epithelium (RPE), has demonstrated successful results in both animals and humans.
View Article and Find Full Text PDFThe aim of this study was to compare glial-derived neurotrophic factor (GDNF) treatment with brain-derived neurotrophic factor (BDNF) treatment of retinal transplants on restoration of visual responses in the superior colliculus (SC) of the S334ter line 3 rat model of rapid retinal degeneration (RD). RD rats (age 4-6 weeks) received subretinal transplants of intact sheets of fetal retina expressing the marker human placental alkaline phosphatase (hPAP). Experimental groups included: (1) untreated retinal sheet transplants, (2) GDNF-treated transplants, (3) BDNF-treated transplants, (4) none surgical, age-matched RD rats, (5) sham surgery RD controls, (6) progenitor cortex transplant RD controls, and (7) normal pigmented rat controls.
View Article and Find Full Text PDFPurpose: To obtain three-dimensional images from retinal transplants in live animals and evaluate the placement and structural quality of the transplants.
Methods: Donor retinal sheets were isolated from E19 fetuses of transgenic rats expressing human alkaline phosphatase (hPAP), and transplanted to the subretinal space of 19-56 days old S334ter-3 rat recipients with fast retinal degeneration (average age at surgery 32 days). A total of 143 rats were imaged 1 day to 2.
Purpose: To investigate whether sheets of fetal retinal allografts can integrate into the dystrophic Abyssinian cat retina with progressive rod cone degeneration.
Methods: Fetal retinal sheets (cat gestational day 42), incubated with BDNF microspheres, were transplanted to the subretinal space of four cats at an early disease stage. Cats were studied by fundus examinations, bilateral full-field flash ERGs, and indocyanine green and fluorescein angiograms up to 4 months following surgery.
This study aimed to test the hypothesis that visual responses in the superior colliculus (SC) originate from synaptic connections between fetal retinal transplants and degenerating host retinas. Sheets of embryonic day 19 rat retina expressing human placental alkaline phosphatase were transplanted to the subretinal space of 3- to 4-week-old S334ter-line-3 rats with fast retinal degeneration. Several months later, visual responses were recorded from the SC.
View Article and Find Full Text PDFThe aim of this study was to evaluate the functional efficacy of retinal progenitor cell (RPC) containing sheets with BDNF microspheres following subretinal transplantation in a rat model of retinal degeneration. Sheets of E19 RPCs derived from human placental alkaline phosphatase (hPAP) expressing transgenic rats were coated with poly-lactide-co-glycolide (PLGA) microspheres containing brain-derived neurotrophic factor (BDNF) and transplanted into the subretinal space of S334ter line 3 rhodopsin retinal degenerate rats. Controls received transplants without BDNF or BDNF microspheres alone.
View Article and Find Full Text PDFPurpose: To evaluate retinal sheet transplants in S334ter-line-3 retinal degenerate rats by comparing visual responses recorded electrophysiologically with morphology based on light and electron microscopy.
Methods: S334ter-line-3 retinal degenerate rats (n = 7) received retinal sheet transplants between postnatal days 28 and 31. The donor tissue was derived from transgenic embryonic day 19 (E19) rat retinae expressing human placental alkaline phosphatase (hPAP).
A visual discrimination apparatus was developed to evaluate the visual sensitivity of normal pigmented rats (n=13) and S334ter-line-3 retinal degenerate (RD) rats (n=15). The apparatus is a modified Y maze consisting of two chambers leading to the rats' home cage. Rats were trained to find a one-way exit door leading into their home cage, based on distinguishing between two different visual alternatives (either a dark background or black and white stripes at varying luminance levels) which were randomly displayed on the back of each chamber.
View Article and Find Full Text PDFRetinal transplantation is one among the various treatment strategies aimed to prevent and restore visual loss. Sheets of fetal retina with or without retinal pigment epithelium (RPE) are transplanted into the subretinal space. Retinal transplants have been shown to substantially improve visual responses in rat retinal degeneration models following retinal transplantation, based on behavior and electrophysiology.
View Article and Find Full Text PDFPhotochem Photobiol
September 2007
Retinal degenerative conditions increase susceptibility to light damage, but rapid retinal degeneration (RD) models show less susceptibility to cyclic dim light. We investigated whether constant blue light (BL) exposure can eliminate the residual visual responses in a comparatively rapid RD rat model. Pigmented rhodopsin mutant S334ter line-3 rat pups (21 days old) were exposed for 5-6 consecutive days to constant BL.
View Article and Find Full Text PDFOptical coherence tomography (OCT), a non-invasive method, was used for qualitative assessment of fetal retinal sheet transplants by non-invasive imaging. Rhodopsin-mutant S334ter-line-3 rats with fast retinal degeneration (28-37-day old) were transplanted with fetal retinal sheets from embryonic day (E) 18-19 pigmented normal rats. Retinal thickness measurements from transplanted (n = 51), no surgery control (n = 8), and normal pigmented rat eyes (n = 6) were obtained using a Zeiss stratus OCT-3 scanning instrument.
View Article and Find Full Text PDFMulti-unit visual responses to light intensities ranging from -6.46 to 0.81 logcd/m2 were recorded from the surface of the superior colliculus of dark-adapted normal pigmented and normal albino rats.
View Article and Find Full Text PDFDiseases affecting the outer retina are incurable once photoreceptors are lost, and these diseases usually cause retinal pigment epithelium (RPE) dysfunction. However, the inner retina can remain functional for some time, even though retinal remodeling occurs as compensation for photoreceptor loss. If the damaged part can be replaced with neuroblastic progenitor and RPE cells as sheets with a beneficial effect on function, vision loss may be prevented and vision may be restored.
View Article and Find Full Text PDFPrevious studies evaluating neural stem cells transplanted into the mature retina have demonstrated limited levels of graft-host integration and photoreceptor differentiation. The purpose of this investigation is to enhance photoreceptor cell differentiation and integration of retinal progenitor cells (RPC) following subretinal transplantation into retinal degenerate rats by optimization of isolation, expansion, and transplantation procedures. RPCs were isolated from human placental alkaline phosphatase (hPAP)-positive embryonic day 17 (E17) rat retina and expanded in serum-free defined media.
View Article and Find Full Text PDFThe aim of this study was to establish synapses between a transplant and a degenerated retina. To tackle this difficult task, a little-known but well-established CNS method was chosen: trans-synaptic pseudorabies virus (PRV) tracing. Sheets of E19 rat retina with or without retinal pigment epithelium (RPE) were transplanted to the subretinal space in 33 Royal College of Surgeons (RCS) and transgenic s334ter-5 rats with retinal degeneration.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
September 2004
Purpose: One of the critical difficulties in design of a high-resolution retinal implant is the proximity of stimulating electrodes to the target cells. This is a report of a phenomenon of retinal cellular migration into a perforated membrane that may help to address this problem.
Methods: Mylar membranes with an array of perforations (3-40 microm in diameter) were used as a substrate for in vitro retinal culture (chicken, rats) and were also transplanted into the subretinal space of adult RCS rats.
J Neurosci Methods
September 2004
A previously described optokinetic testing apparatus [Nat. Neurosci. 5 (2002) 53] was modified to measure vision in each eye separately for evaluation of monocular treatments.
View Article and Find Full Text PDFObjective: To report the subjective and objective improvement in vision in a patient with autosomal dominant retinitis pigmentosa after transplantation of a sheet of fetal neural retina together with its retinal pigment epithelium.
Design: A sheet of fetal neural retina with its retinal pigment epithelium was transplanted into the subretinal space under the fovea unilaterally in a patient with retinitis pigmentosa with visual acuity of 20/800 in the treated eye. Early Treatment Diabetic Retinopathy Study visual acuity testing, scanning laser ophthalmoscope, tissue typing of the donor and recipient, fluorescein angiography, multifocal electroretinogram, multifocal visually evoked potential, and clinical examination were used.