Most neuroimaging techniques require the participant to remain still for reliable recordings to be made. Optically pumped magnetometer (OPM) based magnetoencephalography (OP-MEG) however, is a neuroimaging technique which can be used to measure neural signals during large participant movement (approximately 1 m) within a magnetically shielded room (MSR) (Boto et al., 2018; Seymour et al.
View Article and Find Full Text PDFThere is mounting evidence for predictive coding theory from computational, neuroimaging, and psychological research. However, there remains a lack of research exploring how predictive brain function develops across childhood. To address this gap, we used pediatric magnetoencephalography to record the evoked magnetic fields of 18 younger children (M = 4.
View Article and Find Full Text PDFEur J Neurosci
November 2022
Neural oscillations often occur as transient bursts with variable amplitude and frequency dynamics. Quantifying these effects is important for understanding brain-behaviour relationships, especially in continuous datasets. To robustly measure bursts, rhythmical periods of oscillatory activity must be separated from arrhythmical background 1/f activity, which is ubiquitous in electrophysiological recordings.
View Article and Find Full Text PDFVisual snow refers to the persistent visual experience of static in the whole visual field of both eyes. It is often reported by patients with migraine and co-occurs with conditions such as tinnitus and tremor. The underlying pathophysiology of the condition is poorly understood.
View Article and Find Full Text PDFOne of the primary technical challenges facing magnetoencephalography (MEG) is that the magnitude of neuromagnetic fields is several orders of magnitude lower than interfering signals. Recently, a new type of sensor has been developed - the optically pumped magnetometer (OPM). These sensors can be placed directly on the scalp and move with the head during participant movement, making them wearable.
View Article and Find Full Text PDFOptically pumped magnetometer-based magnetoencephalography (OP-MEG) can be used to measure neuromagnetic fields while participants move in a magnetically shielded room. Head movements in previous OP-MEG studies have been up to 20 cm translation and ∼30° rotation in a sitting position. While this represents a step-change over stationary MEG systems, naturalistic head movement is likely to exceed these limits, particularly when participants are standing up.
View Article and Find Full Text PDFBackground: Optically pumped magnetometers (OPMs) have made moving, wearable magnetoencephalography (MEG) possible. The OPMs typically used for MEG require a low background magnetic field to operate, which is achieved using both passive and active magnetic shielding. However, the background magnetic field is never truly zero Tesla, and so the field at each of the OPMs changes as the participant moves.
View Article and Find Full Text PDFBilinguals have a remarkable ability to juggle two languages. A central question in the field is concerned with the control mechanisms that enable bilinguals to switch language with ease. Theoretical models and neuroimaging evidence suggest that a range of control processes are at play during language switching, and their underlying neural mechanisms are closely related to executive function.
View Article and Find Full Text PDFNaturalistic stimuli such as watching a movie while in the scanner provide an ecologically valid paradigm that has the potential of extracting valuable information on how the brain processes complex stimuli in realistic visual and auditory contexts. Naturalistic viewing is also easier to conduct with challenging participant groups including patients and children. Given the high temporal resolution of MEG, in the present study, we demonstrate how a short movie clip can be used to map distinguishable activation and connectivity dynamics underlying the processing of specific classes of visual stimuli such as face and hand manipulations, as well as contrasting activation dynamics for auditory words and non-words.
View Article and Find Full Text PDFAutism spectrum disorder is increasingly associated with atypical perceptual and sensory symptoms. Here we explore the hypothesis that aberrant sensory processing in autism spectrum disorder could be linked to atypical intra- (local) and interregional (global) brain connectivity. To elucidate oscillatory dynamics and connectivity in the visual domain we used magnetoencephalography and a simple visual grating paradigm with a group of 18 adolescent autistic participants and 18 typically developing control subjects.
View Article and Find Full Text PDFMagnetoencephalography (MEG) is a non-invasive neuroimaging technique which directly measures magnetic fields produced by the electrical activity of the human brain. MEG is quiet and less likely to induce claustrophobia compared with magnetic resonance imaging (MRI). It is therefore a promising tool for investigating brain function in young children.
View Article and Find Full Text PDFThere is increasing interest in understanding how the phase and amplitude of distinct neural oscillations might interact to support dynamic communication within the brain. In particular, previous work has demonstrated a coupling between the phase of low frequency oscillations and the amplitude (or power) of high frequency oscillations during certain tasks, termed phase amplitude coupling (PAC). For instance, during visual processing in humans, PAC has been reliably observed between ongoing alpha (8-13 Hz) and gamma-band (>40 Hz) activity.
View Article and Find Full Text PDF