Publications by authors named "Robert A Rastall"

Prebiotics are known for their health-promoting functions associated with the modulation of the colonic microbiota and the products of fermentation. Recently, single-pot syntheses of galactooligosaccharides in combination with steviol glycosides (mSG-GOS) have been developed. This work was conducted to evaluate their prebiotic effect by using faecal inoculum from healthy human donors during in vitro batch fermentations.

View Article and Find Full Text PDF

Background: There is increasing interest in the bidirectional relationship existing between the gut and brain and the effects of both oligofructose and 2'fucosyllactose to alter microbial composition and mood state. Yet, much remains unknown about the ability of oligofructose and 2'fucosyllactose to improve mood state via targeted manipulation of the gut microbiota.

Objectives: We aimed to compare the effects of oligofructose and 2'fucosyllactose alone and in combination against maltodextrin (comparator) on microbial composition and mood state in a working population.

View Article and Find Full Text PDF

We explored the potential for the prebiotic oligofructose and prebiotic candidate 2'fucosyllactose, alone and in combination (50:50 blend) to induce physiologically relevant increases in neurotransmitter (γ-aminobutyric acid, serotonin, tryptophan, and dopamine) and organic acid (acetate, propionate, butyrate, lactate, and succinate) production as well as microbiome changes using anaerobic pH-controlled in vitro batch culture fermentations over 48 h. Changes in organic acid and neurotransmitter production were assessed by gas chromatography and liquid chromatography and, bacterial enumeration using fluorescence in situ hybridization, respectively. Both oligofructose and oligofructose/2'fucosyllactose combination fermentations induced physiologically relevant concentrations of γ-aminobutyric acid, acetate, propionate, butyrate, and succinate at completion (all P ≤ .

View Article and Find Full Text PDF

Aims: In this study, we explored the effects that the prebiotic inulin-type fructans, and prebiotic candidates: 2'fucosyllactose and β-glucan from barley, singular and in combination had on microbial load, microbiome profile, and short-chain fatty acid production. This was carried out as a prescreening tool to determine combinations that could be taken forward for use in a human intervention trial.

Methods And Results: Effects of inulin-type fructans, 2'fucosyllactose and β-glucan from barley in singular and combination on microbial load and profile and short-chain fatty acid production (SCFA) was conducted using in vitro batch culture fermentation over 48 h.

View Article and Find Full Text PDF

Inulin and oligofructose are classes of prebiotics belonging to a group of nondigestible carbohydrates referred to as inulin-type fructans. While short-chain fructooligosaccharides are enzymatically synthesized from the hydrolysis and transglycosylation of sucrose. Inulin-type fructans and short-chain fructooligosaccharides act as carbon sources for selective pathways supporting digestive health including altering the composition of the gut microbiota along with improving transit time.

View Article and Find Full Text PDF

Human milk oligosaccharides (HMOs) are a class of structurally diverse and complex unconjugated glycans present in breast milk, which act as selective substrates for several genera of select microbes and inhibit the colonisation of pathogenic bacteria. Yet, not all infants are breastfed, instead being fed with formula milks which may or may not contain HMOs. Currently, formula milks only possess two HMOs: 2'-fucosyllactose (2'FL) and lacto--neotetraose (LNnT), which have been suggested to be similarly effective as human breast milk in supporting age-related growth.

View Article and Find Full Text PDF

This study was conducted to investigate the sweetness intensity and the potential fecal microbiome modulation of galactooligosaccharides in combination with enzymatically modified mogrosides (mMV-GOS), both generated through a patented single-pot synthesis. Sweetness intensity was performed by trained sensory panelists. The impact on the human fecal microbiome was evaluated by pH-controlled batch fermentation, and bacterial populations and organic acid concentrations were measured by qPCR and GC-FID, respectively.

View Article and Find Full Text PDF

Luo Han Guo fruit extract (), mainly composed of mogroside V (50%), could be considered a suitable alternative to free sugars; however, its commercial applications are limited by its unpleasant off-notes. In the present work, a central composite design method was employed to optimize the transglycosylation of a mogroside extract using cyclodextrin glucosyltransferases (CGTases) from three different bacteriological sources (, sp., and sp.

View Article and Find Full Text PDF

To improve flavor profiles, three cyclodextrin glucosyltransferases (CGTases) from different bacteriological sources, , sp. and sp., were used with an extract of steviol glycosides (SVglys) and rebaudioside A (RebA) as acceptor substrates in two parallel sets of reactions.

View Article and Find Full Text PDF

Dietary protein residue can result in microbial generation of various toxic metabolites in the gut, such as ammonia. A prebiotic is "a substrate that is selectively utilised by host microorganisms conferring a health benefit" (G. R.

View Article and Find Full Text PDF

Although most members of the genus Bifidobacterium are unable to utilize xylan as a carbon source, the growth of these species can be induced by this polysaccharide in the gut environment. This indicates a requirement for an association between Bifidobacterium species and some other members of gut microbiota. In this study, the role of cross-feeding between Bifidobacterium and Bacteroides species in the bifidogenic effect of xylan was investigated using in-vitro pure and co-culture fermentations.

View Article and Find Full Text PDF

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

View Article and Find Full Text PDF

Probiotics and prebiotics are microbiota-management tools for improving host health. They target gastrointestinal effects via the gut, although direct application to other sites such as the oral cavity, vaginal tract and skin is being explored. Here, we describe gut-derived effects in humans.

View Article and Find Full Text PDF
Article Synopsis
  • Probiotic bacteria can stick to our bodies to help our immune system and gut function better, while also fighting off bad germs.
  • These good bacteria can prevent harmful germs from attaching to our bodies and causing sickness.
  • Scientists need to do more research to understand how these probiotics work in real-life situations, not just in lab tests.
View Article and Find Full Text PDF

Metabolism of protein by gut bacteria is potentially detrimental due to the production of toxic metabolites, such as ammonia, amines, -cresol, and indole. The consumption of prebiotic carbohydrates results in specific changes in the composition and/or activity of the microbiota that may confer benefits to host well-being and health. Here, we have studied the impact of prebiotics on proteolysis within the gut Anaerobic stirred batch cultures were inoculated with feces from omnivores ( = 3) and vegetarians ( = 3) and four protein sources (casein, meat, mycoprotein, and soy protein) with and without supplementation by an oligofructose-enriched inulin.

View Article and Find Full Text PDF

Copra meal hydrolysate (CMH) is obtained by hydrolyzing defatted copra meal with β-mannanase from NT 6.7. In this study, we investigated the resistance of CMH to upper gastrointestinal tract digestion and the fecal fermentation profiles of CMH.

View Article and Find Full Text PDF

Woody biomass is a sustainable and virtually unlimited source of hemicellulosic polysaccharides. The predominant hemicelluloses in softwood and hardwood are galactoglucomannan (GGM) and arabinoglucuronoxylan (AGX), respectively. Based on the structure similarity with common dietary fibers, GGM and AGX may be postulated to have prebiotic properties, conferring a health benefit on the host through specific modulation of the gut microbiota.

View Article and Find Full Text PDF

The suitability of artichoke and sunflower by-products as renewable sources of pectic compounds with prebiotic potential was evaluated by studying their ability to modulate the human faecal microbiota in vitro. Bacterial populations and short-chain fatty acid (SCFA) production were measured. Reduction of the molecular weight of artichoke pectin resulted in greater stimulation of the growth of Bifidobacterium, Lactobacillus and Bacteroides/Prevotella, whilst this effect was observed only in Bacteroides/Prevotella for sunflower samples.

View Article and Find Full Text PDF

The 2017 annual symposium organized by the University Medical Center Groningen in The Netherlands focused on the role of the gut microbiome in human health and disease. Experts from academia and industry examined interactions of prebiotics, probiotics, or vitamins with the gut microbiome in health and disease, the development of the microbiome in early-life and the role of the microbiome on the gut-brain axis. The gut microbiota changes dramatically during pregnancy and intrinsic factors (such as stress), in addition to extrinsic factors (such as diet, and drugs) influence the composition and activity of the gut microbiome throughout life.

View Article and Find Full Text PDF

A dietary prebiotic is defined as 'a substrate that is selectively utilized by host microorganisms conferring a health benefit'. Although this definition evolved concomitantly with the knowledge and technological developments that accrued in the last twenty years, what qualifies as prebiotic continues to be a matter of debate. In this statement, we report the outcome of a workshop where academic experts working in the field of prebiotic research met with scientists from industry.

View Article and Find Full Text PDF

Xylo-oligosaccharides and xylo-polysaccharides (XOS, XPS) produced by autohydrolysis of the fibre from oil palm empty fruit bunches (OPEFB) were purified using gel filtration chromatography to separate the XOS and XPS from the crude autohydrolysis liquor. Six mixed fractions of refined XOS and XPS with average degree of polymerisation (avDP) of 4-64 were obtained. These were characterised in terms of their composition and size by HPLC, MALDI-ToF-MS (selected fractions) and carbohydrate gel electrophoresis (PACE).

View Article and Find Full Text PDF

Shiga toxin (Stx)-producing, food-contaminating Escherichia coli (STEC) is a major health concern. Plant-derived pectin and pectic-oligosaccharides (POS) have been considered as prebiotics and for the protection of humans from Stx. Of five structurally different citrus pectic samples, POS1, POS2 and modified citrus pectin 1 (MCP1) were bifidogenic with similar fermentabilities in human faecal cultures and arabinose-rich POS2 had the greatest prebiotic potential.

View Article and Find Full Text PDF