Publications by authors named "Robert A Policastro"

The Estrogen-Related Receptor (ERR) family of nuclear receptors (NRs) serve key roles in coordinating triglyceride (TAG) accumulation with juvenile growth and development. In both insects and mammals, ERR activity promotes TAG storage during the post-embryonic growth phase, with loss-of-function mutations in mouse and inducing a lean phenotype. However, the role of insect ERRs in controlling TAG accumulation within adipose tissue remains poorly understood, as previous transcriptomic and metabolomic studies relied on whole animal analyses.

View Article and Find Full Text PDF

We developed an hematopoietic stem cell (HSC) gene therapy approach that does not require cell transplantation. To achieve therapeutically relevant numbers of corrected cells, we constructed HSC-tropic HDAd5/35++ vectors expressing a 3' UTR truncated HMGA2 gene and a GFP reporter gene. A SB100x transposase vector mediated random integration of the tHMGA2/GFP transgene cassette.

View Article and Find Full Text PDF

Objectives: The mitochondrial enzyme L-2-hydroxyglutarate dehydrogenase (L2HGDH) regulates the abundance of L-2-hydroxyglutarate (L-2HG), a potent signaling metabolite capable of influencing chromatin architecture, mitochondrial metabolism, and cell fate decisions. Loss of L2hgdh activity in humans induces ectopic L-2HG accumulation, resulting in neurodevelopmental defects, altered immune cell function, and enhanced growth of clear cell renal cell carcinomas. To better understand the molecular mechanisms that underlie these disease pathologies, we used the fruit fly Drosophila melanogaster to investigate the endogenous functions of L2hgdh.

View Article and Find Full Text PDF

larval growth requires efficient conversion of dietary nutrients into biomass. Lactate Dehydrogenase (Ldh) and Glycerol-3-phosphate dehydrogenase (Gpdh1) support larval biosynthetic metabolism by maintaining NAD/NADH redox balance and promoting glycolytic flux. Consistent with the cooperative functions of Ldh and Gpdh1, the loss of both enzymes, but neither single enzyme, induces a developmental arrest.

View Article and Find Full Text PDF

Recent human decedent model studies and compassionate xenograft use have explored the promise of porcine organs for human transplantation. To proceed to human studies, a clinically ready porcine donor must be engineered and its xenograft successfully tested in nonhuman primates. Here we describe the design, creation and long-term life-supporting function of kidney grafts from a genetically engineered porcine donor transplanted into a cynomolgus monkey model.

View Article and Find Full Text PDF

Transcription start site (TSS) usage is a critical factor in the regulation of gene expression. A number of methods for global TSS mapping have been developed, but barriers of expense, technical difficulty, time, and/or cost have limited their broader adoption. To address these issues, we developed Survey of TRanscription Initiation at Promoter Elements with high-throughput sequencing (STRIPE-seq).

View Article and Find Full Text PDF

Transcription start site (TSS) selection influences transcript stability and translation as well as protein sequence. Alternative TSS usage is pervasive in organismal development, is a major contributor to transcript isoform diversity in humans, and is frequently observed in human diseases including cancer. In this review, we discuss the breadth of techniques that have been used to globally profile TSSs and the resulting insights into gene regulation, as well as future prospects in this area of inquiry.

View Article and Find Full Text PDF

Heterogeneity in transcription initiation has important consequences for transcript stability and translation, and shifts in transcription start site (TSS) usage are prevalent in various developmental, metabolic, and disease contexts. Accordingly, numerous methods for global TSS profiling have been developed, including most recently Survey of TRanscription Initiation at Promoter Elements with high-throughput sequencing (STRIPE-seq), a method to profile transcription start sites (TSSs) on a genome-wide scale with significant cost and time savings compared to previous methods. In anticipation of more widespread adoption of STRIPE-seq and related methods for construction of promoter atlases and studies of differential gene expression, we built TSRexploreR, an R package for end-to-end analysis of TSS mapping data.

View Article and Find Full Text PDF

Despite the connection of secretory cells, including goblet and enteroendocrine (EEC) cells, to distinct mucus-containing colorectal cancer histologic subtypes, their role in colorectal cancer progression has been underexplored. Here, our analysis of The Cancer Genome Atlas (TCGA) and single-cell RNA-sequencing data demonstrates that EEC progenitor cells are enriched in -mutant colorectal cancer patient tumors, cell lines, and patient-derived organoids. In -mutant colorectal cancer, EEC progenitors were blocked from differentiating further by DNA methylation and silencing of NEUROD1, a key gene required for differentiation of intermediate EECs.

View Article and Find Full Text PDF

Using muscle stem cell (satellite cell)-specific extracellular vesicle (EV) tracking, satellite cell depletion, cell culture, and single-cell RNA sequencing, we show satellite cells communicate with other cells in skeletal muscle during mechanical overload. Early satellite cell EV communication primes the muscle milieu for proper long-term extracellular matrix (ECM) deposition and is sufficient to support sustained hypertrophy in adult mice, even in the absence of fusion to muscle fibers. Satellite cells modulate chemokine gene expression across cell types within the first few days of loading, and EV delivery of miR-206 to fibrogenic cells represses expression required for appropriate ECM remodeling.

View Article and Find Full Text PDF

Accurate mapping of transcription start sites (TSSs) is key for understanding transcriptional regulation. However, current protocols for genome-wide TSS profiling are laborious and/or expensive. We present Survey of TRanscription Initiation at Promoter Elements with high-throughput sequencing (STRIPE-seq), a simple, rapid, and cost-effective protocol for sequencing capped RNA 5' ends from as little as 50 ng total RNA.

View Article and Find Full Text PDF

Activation of the epithelial-to-mesenchymal transition (EMT) program is a critical mechanism for initiating cancer progression and migration. Colorectal cancers contain many genetic and epigenetic alterations that can contribute to EMT. Mutations activating the PI3K/AKT signaling pathway are observed in >40% of patients with colorectal cancer contributing to increased invasion and metastasis.

View Article and Find Full Text PDF

Endoreplication is a cell cycle variant that entails cell growth and periodic genome duplication without cell division, and results in large, polyploid cells. Cells switch from mitotic cycles to endoreplication cycles during development, and also in response to conditional stimuli during wound healing, regeneration, aging, and cancer. In this study, we use integrated approaches in Drosophila to determine how mitotic cycles are remodeled into endoreplication cycles, and how similar this remodeling is between induced and developmental endoreplicating cells (iECs and devECs).

View Article and Find Full Text PDF

Genome-wide mapping of protein-DNA interactions is a staple approach in many areas of modern molecular biology. Genome-wide profiles of protein-binding sites are most commonly generated by chromatin immunoprecipitation and high-throughput sequencing (ChIP-seq). Although ChIP-seq has played a central role in studying genome-wide protein binding, recent work has highlighted systematic biases in the technique that warrant technical and interpretive caution and underscore the need for orthogonal techniques to both confirm the results of ChIP-seq studies and uncover new insights not accessible to ChIP.

View Article and Find Full Text PDF