In type 1 diabetes (T1D), autoreactive immune cells infiltrate the pancreas and secrete proinflammatory cytokines that initiate cell death in insulin producing islet β-cells. Protein kinase C δ (PKCδ) plays a role in mediating cytokine-induced β-cell death; however, the exact mechanisms are not well understood. To address this, we used an inducible β-cell specific PKCδ KO mouse as well as a small peptide inhibitor of PKCδ.
View Article and Find Full Text PDFThe integrated stress response (ISR) is a conserved signaling network that detects aberrations and computes cellular responses. Dissecting these computations has been difficult because physical and chemical inducers of stress activate multiple parallel pathways. To overcome this challenge, we engineered a photo-switchable control over the ISR sensor kinase PKR (opto-PKR), enabling virtual, on-target activation.
View Article and Find Full Text PDFInsulin-secreting β-cells are functionally heterogeneous. Whether there exist cells driving the first-phase calcium response in individual islets, has not been examined. We examine "first responder" cells, defined by the earliest [Ca2+] response during first-phase [Ca2+] elevation, distinct from previously identified "hub" and "leader" cells.
View Article and Find Full Text PDFIn type 1 diabetes (T1D), islet dysfunction occurs prior to diabetes onset. Pro-inflammatory cytokines can disrupt insulin secretion and Ca homeostasis. Connexin36 (Cx36) gap junctions electrically couple β-cells to coordinate glucose-stimulated Ca and insulin secretion.
View Article and Find Full Text PDFPrevious studies have demonstrated stimulation of endocrine pancreas function by vagal nerve electrical stimulation. While this increases insulin secretion, expected concomitant reductions in circulating glucose do not occur. A complicating factor is the non-specific nature of electrical nerve stimulation.
View Article and Find Full Text PDFUnderstanding how cell subpopulations in a tissue impact overall system function is challenging. There is extensive heterogeneity among insulin-secreting β-cells within islets of Langerhans, including their insulin secretory response and gene expression profile, and this heterogeneity can be altered in diabetes. Several studies have identified variations in nutrient sensing between β-cells, including glucokinase (GK) levels, mitochondrial function, or expression of genes important for glucose metabolism.
View Article and Find Full Text PDFKey Points: The pancreatic islets of Langerhans maintain glucose homeostasis through insulin secretion, where insulin secretion dynamics are regulated by intracellular Ca signalling and electrical coupling of the insulin producing β-cells in the islet. We have previously shown that cytokines decrease β-cell coupling and that compounds which increase cAMP can increase coupling. In both mouse and human islets exendin-4, which increases cAMP, protected against cytokine-induced decreases in coupling and in mouse islets preserved glucose-stimulated calcium signalling by increasing connexin36 gap junction levels on the plasma membrane.
View Article and Find Full Text PDF