Publications by authors named "Robert A Lugmaier"

Strand separation of double-stranded DNA is a crucial step for essential cellular processes such as recombination and transcription. By means of a molecular force balance, we have analyzed the impact of different pulling directions and different force-loading rates on the unbinding process of short double-stranded DNA. At loading rates above 9 x 10(5) pN/s, we found a marked difference in rupture probability for pulling the duplex in 3'-3' direction compared to a 5'-5' direction, indicating different unbinding pathways.

View Article and Find Full Text PDF

Progress in scanning probe microscopy profited from a flourishing multitude of new instrument designs, which lead to novel imaging modes and as a consequence to innovative microscopes. Often these designs were hampered by the restrictions, which conventional milling techniques impose. Modern rapid prototyping techniques, where layer by layer is added to the growing piece either by light driven polymerization or by three-dimensional printing techniques, overcome this constraint, allowing highly concave or even embedded and entangled structures.

View Article and Find Full Text PDF

Stretching experiments with long double-stranded DNA molecules in physiological ambient revealed a force-induced transition at a force of 65 pN. During this transition between B-DNA and highly overstretched S-DNA the DNA lengthens by a factor of 1.7 of its B-form contour length.

View Article and Find Full Text PDF

P-pili of uropathogenic Escherichia coli mediate the attachment to epithelial cells in the human urinary tract and kidney and therefore play an important role in infection. A better understanding of this mechanism could help to prevent bacteria from spreading but also provides interesting insights into molecular mechanics for future nanotech applications. The helical rod design of P-pili provides an efficient design to withstand hydrodynamic shear forces.

View Article and Find Full Text PDF

High-resolution optical microscopy is an essential pre-requisite for life science force microscopy, particularly for applications in cell biology and medicine. Identification and validation of cells is typically established with techniques like phase contrast microscopy or differential interference contrast microscopy. The option to select or monitor individual cells online with such light microscopy techniques while performing atomic force microscopy (AFM) measurements is therefore extremely beneficial.

View Article and Find Full Text PDF