Publications by authors named "Robert A Houde"

This study was designed to measure the relative contributions to speech intelligibility of spectral envelope peaks (including, but not limited to formants) versus the detailed shape of the spectral envelope. The problem was addressed by asking listeners to identify sentences and nonsense syllables that were generated by two structurally identical source-filter synthesizers, one of which constructs the filter function based on the detailed spectral envelope shape while the other constructs the filter function using a purposely coarse estimate that is based entirely on the distribution of peaks in the envelope. Viewed in the broadest terms the results showed that nearly as much speech information is conveyed by the peaks-only method as by the detail-preserving method.

View Article and Find Full Text PDF

The purpose of this paper is to propose and evaluate a new model of vowel perception which assumes that vowel identity is recognized by a template-matching process involving the comparison of narrow band input spectra with a set of smoothed spectral-shape templates that are learned through ordinary exposure to speech. In the present simulation of this process, the input spectra are computed over a sufficiently long window to resolve individual harmonics of voiced speech. Prior to template creation and pattern matching, the narrow band spectra are amplitude equalized by a spectrum-level normalization process, and the information-bearing spectral peaks are enhanced by a "flooring" procedure that zeroes out spectral values below a threshold function consisting of a center-weighted running average of spectral amplitudes.

View Article and Find Full Text PDF

A speech synthesizer was developed that operates by summing exponentially damped sinusoids at frequencies and amplitudes corresponding to peaks derived from the spectrum envelope of the speech signal. The spectrum analysis begins with the calculation of a smoothed Fourier spectrum. A masking threshold is then computed for each frame as the running average of spectral amplitudes over an 800-Hz window.

View Article and Find Full Text PDF