One of the hallmarks of cancer is high levels of DNA replication stress and defects in the DNA damage response (DDR) pathways, which are critical for maintaining genomic integrity. Ataxia telangiectasia and Rad3-related protein (ATR) is a key regulator of the DDR machinery and an attractive therapeutic target, with multiple ATR inhibitors holding significant promise in ongoing clinical studies. Herein, we describe the discovery and characterization of ART0380 (), a potent and selective ATR inhibitor with a compelling in vitro and in vivo pharmacological profile currently undergoing Phase 2 clinical studies in patients with advanced or metastatic solid tumors as monotherapy and in combination with DNA-damaging agents (NCT04657068 and NCT05798611).
View Article and Find Full Text PDFRepair of DNA damage is essential for the maintenance of genome stability and cell viability. DNA double strand breaks (DSBs) constitute a toxic class of DNA lesion and multiple cellular pathways exist to mediate their repair. Robust and titratable assays of cellular DSB repair (DSBR) are important to functionally interrogate the integrity and efficiency of these mechanisms in disease models as well as in response to genetic or pharmacological perturbations.
View Article and Find Full Text PDFPurpose: DNA polymerase theta (Polθ, encoded by the POLQ gene) is a DNA repair enzyme critical for microhomology mediated end joining (MMEJ). Polθ has limited expression in normal tissues but is frequently overexpressed in cancer cells and, therefore, represents an ideal target for tumor-specific radiosensitization. In this study we evaluate whether targeting Polθ with novel small-molecule inhibitors is a feasible strategy to improve the efficacy of radiotherapy.
View Article and Find Full Text PDFHuman DNA polymerase theta (Polθ), which is essential for microhomology-mediated DNA double strand break repair, has been proposed as an attractive target for the treatment of BRCA deficient and other DNA repair pathway defective cancers. As previously reported, we recently identified the first selective small molecule Polθ in vitro probe, (ART558), which recapitulates the phenotype of Polθ loss, and in vivo probe, (ART812), which is efficacious in a model of PARP inhibitor resistant TNBC in vivo. Here we describe the discovery, biochemical and biophysical characterization of these probes including small molecule ligand co-crystal structures with Polθ.
View Article and Find Full Text PDFTo identify approaches to target DNA repair vulnerabilities in cancer, we discovered nanomolar potent, selective, low molecular weight (MW), allosteric inhibitors of the polymerase function of DNA polymerase Polθ, including ART558. ART558 inhibits the major Polθ-mediated DNA repair process, Theta-Mediated End Joining, without targeting Non-Homologous End Joining. In addition, ART558 elicits DNA damage and synthetic lethality in BRCA1- or BRCA2-mutant tumour cells and enhances the effects of a PARP inhibitor.
View Article and Find Full Text PDFA novel selective benzoxazepin inhibitor of PI3Kδ has been discovered. Beginning from compound , an αPI3K inhibitor, we utilized structure-based drug design and computational analysis of dihedral torsion angles to optimize for PI3Kδ isoform potency and isoform selectivity. Further medicinal chemistry optimization of the series led to the identification of , a highly potent and selective inhibitor of PI3Kδ.
View Article and Find Full Text PDFInhibitors targeting the activating mutants of the epidermal growth factor receptor (EGFR) have found success in the treatment of EGFR mutant positive non-small-cell lung cancer. A secondary point mutation (T790M) in the inhibitor binding site has been linked to the acquired resistance against those first generation therapeutics. Herein, we describe the lead optimization of a series of reversible, pan-mutant (L858R, del T790M/L858R, and T790M/del) EGFR inhibitors.
View Article and Find Full Text PDFActivating mutations within the epidermal growth factor receptor (EGFR) kinase domain, commonly L858R or deletions within exon 19, increase EGFR-driven cell proliferation and survival and are correlated with impressive responses to the EGFR inhibitors erlotinib and gefitinib in nonsmall cell lung cancer patients. Approximately 60% of acquired resistance to these agents is driven by a single secondary mutation within the EGFR kinase domain, specifically substitution of the gatekeeper residue threonine-790 with methionine (T790M). Due to dose-limiting toxicities associated with inhibition of wild-type EGFR (wtEGFR), we sought inhibitors of T790M-containing EGFR mutants with selectivity over wtEGFR.
View Article and Find Full Text PDFJ Med Chem
June 2013
Dysfunctional signaling through the phosphoinositide 3-kinase (PI3K)/AKT/mTOR pathway leads to uncontrolled tumor proliferation. In the course of the discovery of novel benzoxepin PI3K inhibitors, we observed a strong dependency of in vivo antitumor activity on the free-drug exposure. By lowering the intrinsic clearance, we derived a set of imidazobenzoxazepin compounds that showed improved unbound drug exposure and effectively suppressed growth of tumors in a mouse xenograft model at low drug dose levels.
View Article and Find Full Text PDFUsing structure-based design, two novel series of highly potent biaryl amine mitogen-activated protein kinase kinase (MEK) inhibitors have been discovered. These series contain an H-bond acceptor, in a shifted position compared with previously disclosed compounds, and an adjacent H-bond donor, resulting in a bidentate interaction with the Ser212 residue of MEK1. The most potent compound identified, 1 (G-894), is orally active in in vivo pharmacodynamic and tumor xenograft models.
View Article and Find Full Text PDFA series of pyrimidine nitrile inhibitors of Cathepsin K with reduced glutathione reactivity has been identified and Molecular Core Matching (MoCoM) has been used to quantify the effect of an amino substituent at C5.
View Article and Find Full Text PDFThe growth-inhibitory activities of an extensive series of quaternized quino[4,3,2- kl]acridinium salts against tumor cell lines in vitro have been measured and their biological properties interpreted in the light of differential binding to different DNA isoforms. Selectivity for quadruplex DNA binding and stabilization by compounds were explored through an array of methods: UV absorption and fluorescence emission spectroscopy, surface plasmon resonance, and competition dialysis. Quadruplex DNA interaction was further characterized through FRET and DNA polymerase arrest assays.
View Article and Find Full Text PDFFurther investigation of a series of thienyl-based hydroxamic acids that included ADS100380 and ADS102550 led to the identification of the 5-pyridin-2-yl-thiophene-2-hydroxamic acid 3c, which possessed modest HDAC inhibitory activity. Substitution at the 5- and 6-positions of the pyridyl ring of compound 3c provided compounds 5a-g, 7a, b, 9, and 13a. Compound 5b demonstrated improved potency, in vitro DMPK profile, and rat oral bioavailability, compared to ADS102550.
View Article and Find Full Text PDFPalladium(0)-mediated Suzuki-Miyaura and Heck transformations have been exploited to provide examples of 8-methylquino[4,3,2-kl]acridines and 8,13-dimethylquino[4,3,2-kl]acridinium iodides bearing bulky saturated (3-acetoxy)propyl or (E)-3-(morpholin-4-yl)-3-oxopropenyl substituents variously in the 3-, 6-, or 10-positions of the pentacyclic nucleus. The pharmacological/pharmaceutical properties of four compounds (4, RHPS4), (5, IH383), (6, RHPS16), and (17, RHPS19) were measured to assess their clinical potential as DNA G-quadruplex-stabilizing/telomerase inhibitory agents. The following properties were measured: stability in tissue culture media in the presence of A549 lung and MCF-7 breast tumor cells, metabolic stability when incubated with rat liver microsomes, and rate of uptake and subcellular location in A549 and MCF-7 cells.
View Article and Find Full Text PDFTelomeric integrity is required to maintain the replicative ability of cancer cells and is a target for the G-quadruplex-stabilizing drug 3,11-difluoro-6,8,13-trimethyl-8H-quino[4,3,2-kl]acridinium methosulfate (RHPS4). We report a senescent-like growth arrest in MCF-7 breast cancer cells, within 14 to 17 days, and a reduction in telomere length (from 5.2 kilobases (kb) to 4.
View Article and Find Full Text PDFCyclisation of 9-(benzotriazol-1-yl)acridine to the pentacycle 8H-quino[4,3,2-kl]acridine in a range of low-boiling solvents is mechanistically distinct from previously published photochemical (carbene) and thermolytic (radical) cyclisations. Fragmentation of the triazole ring of to a diazonium intermediate, and its subsequent heterolysis (-N(2)) and cyclisation is facilitated by solvation of intermediate zwitterionic species. Derivatives of 2- and 3-aminoquinoacridines methylated in the 8-position can be converted to 8,13-dimethylquino[4,3,2-kl]acridinium iodide salts with methyl iodide and were required for biological examination as potential telomerase inhibitors.
View Article and Find Full Text PDFThe NMR structure of the parallel-stranded DNA quadruplex d(TTAGGGT)(4), containing the human telomeric repeat, has been determined in solution in complex with a fluorinated pentacyclic quino[4,3,2-kl]acridinium cation (RHPS4). RHPS4 has been identified as a potent inhibitor of telomerase at submicromolar levels (IC(50) value of 0.33(+/-0.
View Article and Find Full Text PDFPd(0) mediated couplings between substituted 2-(pivaloylamino)benzeneboronic acids and 3,6-disubstituted-10-methylacridones 13 bearing a bromo or trifluoromethylsulfonyloxy substituent in the 1-position yield intermediate 1-arylacridones 16 which can be can be cyclised to new 8-methylquino[4,3,2-kl]acridines 17 with phosphorus oxychloride or 6 M HCI in EtOH. Heck reactions between triflate-substituted substrates 17 and acrylic acid derivatives afforded quinoacridines with unsaturated side-chains in the 6-position. Alkylboranes, prepared by interaction of 9-borabicyclo[3,3,1]nonane (9-BBN) and allyl acetate or N-allyltrifluoroacetamide, participated in Suzuki-Miyaura reactions with chloro-substituted 8-methylquinoacridines to form derivatives bearing functionalised propyl groups in the 6- and 10-positions.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2001
Two short routes to novel methylated pentacyclic quinoacridinium salts have been devised. New compounds display telomerase-inhibitory potency (<1 microM) in the TRAP assay. 3,11-Difluoro-6,8,13-trimethyl-8H-quino[4,3,2-kl]acridinium methosulfate (12d, RHPS4, NSC 714187) has a higher selectivity for triplex and quadruplex DNA structures than the 3,6,8,11,13-pentamethyl analogue (12c, RHPS3, NSC 714186) and a low overall growth-inhibitory activity in the NCI 60 cell panel (mean GI(50) 13.
View Article and Find Full Text PDF