Over the past two decades, centrifugal microfluidic systems have successfully demonstrated their capability for robust, high-performance liquid handling to enable modular, multi-purpose lab-on-a-chip platforms for a wide range of life-science applications. Beyond the handling of homogeneous liquids, the unique, rotationally controlled centrifugal actuation has proven to be specifically advantageous for performing cell and particle handling and assays. In this review we discuss technologies to implement two important steps for cell handling, namely separation and capturing/counting.
View Article and Find Full Text PDFA novel active valving technique, whereby paraffin wax plugs in microchannels on a centrifugal microfluidic platform are actuated using focused infrared (IR) radiation is demonstrated in this report. Microchannels were simultaneously or sequentially opened using a stationary IR source by forming wax plugs with similar or differing melting points. The presented wax plugs offer key advantages over current active valving techniques, including a less involved fabrication procedure, a simpler actuation process, and the ability to multiplex experiment with active valves.
View Article and Find Full Text PDFWe introduce the integration of a novel dielectrophoresis (DEP)-assisted filter with a compact disk (CD)-based centrifugal platform. Carbon-electrode dielectrophoresis (carbon-DEP) refers to the use of carbon electrodes to induce DEP. In this work, 3D carbon electrodes are fabricated using the C-MEMS technique and are used to implement a DEP-enabled active filter to trap particles of interest.
View Article and Find Full Text PDF