Direct catalytic conversion of ethanol to hydrocarbon blend-stock can increase biofuels use in current vehicles beyond the ethanol blend-wall of 10-15%. Literature reports describe quantitative conversion of ethanol over zeolite catalysts but high C2 hydrocarbon formation renders this approach unsuitable for commercialization. Furthermore, the prior mechanistic studies suggested that ethanol conversion involves endothermic dehydration step.
View Article and Find Full Text PDFA monomeric Mn(II) complex has been prepared with the facially-coordinating Tp(Ph2) ligand, (Tp(Ph2) = hydrotris(3,5-diphenylpyrazol-1-yl)borate). The X-ray crystal structure shows three coordinating solvent molecules resulting in a six-coordinate complex with Mn-ligand bond lengths that are consistent with a high-spin Mn(II) ion. Treatment of this Mn(II) complex with excess KO2 at room temperature resulted in the formation of a Mn(III)-O2 complex that is stable for several days at ambient conditions, allowing for the determination of the X-ray crystal structure of this intermediate.
View Article and Find Full Text PDFThree peroxomanganese(III) complexes [Mn(III)(O(2))(mL(5)(2))](+), [Mn(III)(O(2))(imL(5)(2))](+), and [Mn(III)(O(2))(N4py)](+) supported by pentadentate ligands (mL(5)(2) = N-methyl-N,N',N'-tris(2-pyridylmethyl)ethane-1,2-diamine, imL(5)(2) = N-methyl-N,N',N'-tris((1-methyl-4-imidazolyl)methyl)ethane-1,2-diamine, and N4py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine) were generated by treating Mn(II) precursors with H(2)O(2) or KO(2). Electronic absorption, magnetic circular dichroism (MCD), and variable-temperature, variable-field MCD data demonstrate that these complexes have very similar electronic transition energies and ground-state zero-field splitting parameters, indicative of nearly identical coordination geometries. Because of uncertainty in peroxo (side-on η(2) versus end-on η(1)) and ligand (pentadentate versus tetradentate) binding modes, density functional theory (DFT) computations were used to distinguish between three possible structures: pentadentate ligand binding with (i) a side-on peroxo and (ii) an end-on peroxo, and (iii) tetradentate ligand binding with a side-on peroxo.
View Article and Find Full Text PDFPeroxomanganese(iii) adducts have been postulated as important intermediates in manganese-containing enzymes and small molecule oxidation catalysts. Synthetic peroxomanganese(iii) complexes are known to be nucleophilic and facilitate aldehyde deformylation, offering a convenient way to compare relative reactivities of complexes supported by different ligands. In this work, tetradentate dipyridyldiazacycloalkane ligands with systematically perturbed steric and electronic properties were used to generate a series of manganese(ii) and peroxomanganese(iii) complexes.
View Article and Find Full Text PDFThe electronic structures of the bis(hydroxo)manganese(IV) and oxohydroxomanganese(IV) complexes [Mn(IV)(OH)(2)(Me(2)EBC)](2+) and [Mn(IV)(O)(OH)(Me(2)EBC)](+) were probed using electronic absorption, magnetic circular dichroism (MCD), and variable-temperature, variable-field MCD spectroscopies. The d-d transitions of [Mn(IV)(OH)(2)(Me(2)EBC)](2+) were assigned using a group theory analysis coupled with the results of time-dependent density functional theory computations. These assignments permit the development of an experimentally validated description for the pi and sigma interactions in this complex.
View Article and Find Full Text PDFA set of four [Mn(II)(L(7)py(2)(R))](2+) complexes, supported by the tetradentate 1,4-bis(2-pyridylmethyl)-1,4-diazepane ligand and derivatives with pyridine substituents in the 5 (R = Br) and 6 positions (R = Me and MeO), are reported. X-ray crystal structures of these complexes all show the L(7)py(2)(R) ligands bound to give a trans complex. Treatment of these Mn(II) precursors with either H(2)O(2)/Et(3)N or KO(2) in MeCN at -40 degrees C results in the formation of peroxomanganese complexes [Mn(III)(O(2))(L(7)py(2)(R))](+) differing only in the identity of the pyridine ring substituent.
View Article and Find Full Text PDF