Inbreeding depression can reduce the viability of wild populations. Detecting inbreeding depression in the wild is difficult; developing accurate estimates of inbreeding can be time and labor intensive. In this study, we used a two-step modeling procedure to incorporate uncertainty inherent in estimating individual inbreeding coefficients from multilocus genotypes into estimates of inbreeding depression in a population of Weddell seals ().
View Article and Find Full Text PDFWildlife restoration often involves translocation efforts to reintroduce species and supplement small, fragmented populations. We examined the genomic consequences of bighorn sheep () translocations and population isolation to enhance understanding of evolutionary processes that affect population genetics and inform future restoration strategies. We conducted a population genomic analysis of 511 bighorn sheep from 17 areas, including native and reintroduced populations that received 0-10 translocations.
View Article and Find Full Text PDFLife history theory predicts allocation of energy to reproduction varies with maternal age, but additional maternal features may be important to the allocation of energy to reproduction. We aimed to characterize age-specific variation in maternal allocation and assess the relationship between maternal allocation and other static and dynamic maternal features. Mass measurements of 531 mothers and pups were used with Bayesian hierarchical models to explain the relationship between diverse maternal attributes and both the proportion of mass allocated by Weddell seal mothers, and the efficiency of mass transfer from mother to pup during lactation as well as the weaning mass of pups.
View Article and Find Full Text PDFMigration evolved as a behavior to enhance fitness through exploiting spatially and temporally variable resources and avoiding predation or other threats. Globally, landscape alterations have resulted in declines to migratory populations across taxa. Given the long time periods over which migrations evolved in native systems, it is unlikely that restored populations embody the same migratory complexity that existed before population reductions or regional extirpation.
View Article and Find Full Text PDFRespiratory disease caused by Mycoplasma ovipneumoniae and Pasteurellaceae poses a formidable challenge for bighorn sheep (Ovis canadensis) conservation. All-age epizootics can cause 10-90% mortality and are typically followed by multiple years of enzootic disease in lambs that hinders post-epizootic recovery of populations. The relative frequencies at which these epizootics are caused by the introduction of novel pathogens or expression of historic pathogens that have become resident in the populations is unknown.
View Article and Find Full Text PDFIn contrast to broad range expansion through translocations, many mountain goat ( Oreamnos americanus) populations have shown signs of decline. Recent documentation of pneumonia in mountain goats highlights their susceptibility to bacterial pathogens typically associated with bighorn sheep ( Ovis canadensis) epizootics. Respiratory pathogen communities of mountain goats are poorly characterized yet have important implications for management and conservation of both species.
View Article and Find Full Text PDFInbreeding and relationship metrics among and within populations are useful measures for genetic management of wild populations, but accuracy and precision of estimates can be influenced by the number of individual genotypes analysed. Biologists are confronted with varied advice regarding the sample size necessary for reliable estimates when using genomic tools. We developed a simulation framework to identify the optimal sample size for three widely used metrics to enable quantification of expected variance and relative bias of estimates and a comparison of results among populations.
View Article and Find Full Text PDFRespiratory disease has been a persistent problem for the recovery of bighorn sheep (Ovis canadensis), but has uncertain etiology. The disease has been attributed to several bacterial pathogens including Mycoplasma ovipneumoniae and Pasteurellaceae pathogens belonging to the Mannheimia, Bibersteinia, and Pasteurella genera. We estimated detection probability for these pathogens using protocols with diagnostic tests offered by a fee-for-service laboratory and not offered by a fee-for-service laboratory.
View Article and Find Full Text PDFAge-related changes in maternal reproductive allocation for long-lived species are a key prediction from life-history theory. Theoretical and empirical work suggests that allocation may increase with age due to constraint (increases with experience) or restraint (increases with age in the face of declining residual reproductive value), and may decrease among the oldest aged animals due to senescence in reproductive function. Here, we use a hierarchical modelling approach to investigate the age-related patterns of change in maternal reproductive effort in the Weddell seal, a long-lived marine mammal with a protracted period of maternal care during which mothers allocate a large proportion of body mass while feeding little.
View Article and Find Full Text PDFReproductive synchrony tends to be widespread in diverse species of plants and animals, especially at higher latitudes. However, for long-lived mammals, birth dates for different individuals can vary by weeks within a population. A mother's birth timing can reveal useful information about her reproductive abilities and have important implications for the characteristics and survival of her offspring.
View Article and Find Full Text PDFMany animal life cycles involve movements among different habitats to fulfill varying resource demands. There are inherent costs associated with such movements, and the decision to leave or stay at a given location ought to be motivated by the benefits associated with potential target habitats. Because movement patterns, especially those associated with reproduction, can have important implications for the success (survival, reproduction) of individual animals, and therefore a population's dynamics, it is important to identify and understand their sources of variation (environmental and individual).
View Article and Find Full Text PDFPolynyas are areas of open water surrounded by sea ice and are important sources of primary production in high-latitude marine ecosystems. The magnitude of annual primary production in polynyas is controlled by the amount of exposure to solar radiation and sensitivity to changes in sea-ice extent. The degree of coupling between primary production and production by upper trophic-level consumers in these environments is not well understood, which prevents reliable predictions about population trajectories for species at higher trophic levels under potential future climate scenarios.
View Article and Find Full Text PDFAlthough the quantification of individual heterogeneity in wild populations' vital rates has recently attracted growing interest among ecologists, the investigation of its evolutionary consequences remains limited, mainly because of the difficulties in assessing fitness and heritability from field studies on free-ranging animals. In the presence of individual variability, evaluation of fitness consequences can notably be complicated by the existence of trade-offs among different vital rates. In this study, to further assess the evolutionary significance of previously quantified levels of individual heterogeneity in female Weddell seal (Leptonychotes weddellii Lesson) reproductive rates (Chambert et al.
View Article and Find Full Text PDFIndividual variation in reproductive success is a key feature of evolution, but also has important implications for predicting population responses to variable environments. Although such individual variation in reproductive outcomes has been reported in numerous studies, most analyses to date have not considered whether these realized differences were due to latent individual heterogeneity in reproduction or merely random chance causing different outcomes among like individuals. Furthermore, latent heterogeneity in fitness components might be expressed differently in contrasted environmental conditions, an issue that has only rarely been investigated.
View Article and Find Full Text PDFIn many species, temporary emigration (TE) is a phenomenon, often indicative of life-history characteristics such as dormancy, skipped reproduction, or partial migration, whereby certain individuals in a population are temporarily unobservable at a particular site. TE may be a flexible condition-dependent strategy that allows individuals to mitigate effects of adverse conditions. Consequently, TE rates ought to be highly variable, but sources of variations are poorly understood for most species.
View Article and Find Full Text PDFExtreme events have been suggested to play a disproportionate role in shaping ecological processes, but our understanding of the types of environmental conditions that elicit extreme consequences in natural ecosystems is limited. Here, we investigated the impact of a massive iceberg on the dynamics of a population of Weddell seals. Reproductive rates of females were reduced, but survival appeared unaffected.
View Article and Find Full Text PDF1. Life-history theory predicts that those vital rates that make larger contributions to population growth rate ought to be more strongly buffered against environmental variability than are those that are less important. Despite the importance of the theory for predicting demographic responses to changes in the environment, it is not yet known how pervasive demographic buffering is in animal populations because the validity of most existing studies has been called into question because of methodological deficiencies.
View Article and Find Full Text PDFS. Creel et al. reported a negative correlation between fecal progesterone concentrations and elk:wolf ratios in greater Yellowstone elk (Cervus elaphus) herds and interpreted this correlation as evidence that pregnancy rates of elk decreased substantially in the presence of wolves (Canis lupus).
View Article and Find Full Text PDFMuch of the existing literature that evaluates the roles of density-dependent and density-independent factors on population dynamics has been called into question in recent years because measurement errors were not properly dealt with in analyses. Using state-space models to account for measurement errors, we evaluated a set of competing models for a 22-year time series of mark-resight estimates of abundance for a breeding population of female Weddell seals (Leptonychotes weddellii) studied in Erebus Bay, Antarctica. We tested for evidence of direct density dependence in growth rates and evaluated whether equilibrium population size was related to seasonal sea-ice extent and the Southern Oscillation Index (SOI).
View Article and Find Full Text PDFIrruptive population dynamics appear to be widespread in large herbivore populations, but there are few empirical examples from long time series with small measurement error and minimal harvests. We analyzed an 89-year time series of counts and known removals for pronghorn (Antilocapra americana) in Yellowstone National Park of the western United States during 1918-2006 using a suite of density-dependent, density-independent, and irruptive models to determine if the population exhibited irruptive dynamics. Information-theoretic model comparison techniques strongly supported irruptive population dynamics (Leopold model) and density dependence during 1918-1946, with the growth rate slowing after counts exceeded 600 animals.
View Article and Find Full Text PDFWolf restoration has become a widely accepted conservation and management practice throughout North America and Europe, though the ecosystem effects of returning top carnivores remain both scientific and societal controversies. Mathematical models predicting and describing wolf-ungulate interactions are typically limited to the wolves' primary prey, with the potential for prey switching in wolf-multiple-ungulate systems only suggested or assumed by a number of investigators. We used insights gained from experiments on small taxa and field data from ongoing wolf-ungulate studies to construct a model of predator diet composition for a wolf-elk-bison system in Yellowstone National Park, Wyoming, USA.
View Article and Find Full Text PDFUnderstanding mechanisms influencing the movement paths of animals is essential for comprehending behavior and accurately predicting use of travel corridors. In Yellowstone National Park (USA), the effects of roads and winter road grooming on bison (Bison bison) travel routes and spatial dynamics have been debated for more than a decade. However, no rigorous studies have been conducted on bison spatial movement patterns.
View Article and Find Full Text PDF1. Organisms balance current reproduction against future survival and reproduction, which results in life-history trade-offs. These trade-offs are also known as reproductive costs and may represent significant factors shaping life-history strategy for many species.
View Article and Find Full Text PDF