We have previously demonstrated that R18 and its d-enantiomer, R18D, are neuroprotective at 24 hours following intraluminal filament occlusion of the middle cerebral artery (MCAO) in the rat. This study examined R18 and R18D effectiveness in improving functional outcomes at up to 56 days poststroke following endothelin-1-induced MCAO. Peptides were administered intravenously at doses of 100, 300, or 1000 nmol/kg, 60 minutes after MCAO.
View Article and Find Full Text PDFActa Neuropsychiatr
June 2018
Objective: Stroke patients often suffer from delayed disturbances of mood and cognition. In rodents, the prefrontal cortex (PFC) is involved in both higher order cognition and emotion. Our objective was to determine if bilateral focal ischaemic lesions restricted to the medial prefrontal cortex (mPFC) could be used to model post-stroke anxiety and/or cognitive deficits.
View Article and Find Full Text PDFBehav Neurosci
February 2017
Stroke is one of the most prominent causes of neurological disability, and the number of stroke cases worldwide is expected to grow due to increases in both average life span and population. As such, new methods for both acute treatment and poststroke rehabilitation will be increasingly necessary. Although a number of approaches to restoring motor function poststroke are in development, there are few methods to alleviate the cognitive deficits caused by this disease.
View Article and Find Full Text PDFSecondary damage processes, such as inflammation and oxidative stress, can exacerbate an ischemic lesion and spread to adjacent brain regions. Yet, few studies investigate how regions remote from the infarct could also suffer from degeneration and inflammation in the aftermath of a stroke. To find out to what extent far-remote brain regions are affected after stroke, we used a bilateral endothelin-1-induced prefrontal infarct rat model.
View Article and Find Full Text PDFIschemic stroke is one of the leading causes of neurological disability worldwide, and it has been estimated that about one quarter of stroke survivors experience some measurable long-term cognitive impairments. Many higher order cognitive deficits occur because of damage to the prefrontal cortex (PFC), which is one of the main areas of the brain responsible for executive functioning in mammals. Currently, there are few animal models that examine the effects of stroke on executive function.
View Article and Find Full Text PDF