Publications by authors named "Robert A Colvin"

Tau is an intracellular protein but also known to be released into the extracellular fluid. Tau release mechanisms have drawn intense attention as these are known to play a key role in Alzheimer's disease (AD) pathology. However, tau can also be released under physiological conditions although its physiological function and release mechanisms have been poorly characterized, especially in human neuronal cells.

View Article and Find Full Text PDF

The intricate relationship between the dopaminergic system and olfactory associative learning in has been an intense scientific inquiry. Leveraging the formidable genetic tools, we conducted a screening of 57 dopaminergic drivers, leading to the discovery of DAN-c1 driver, uniquely targeting the single dopaminergic neuron (DAN) in each brain hemisphere. While the involvement of excitatory D1-like receptors is well-established, the role of D2-like receptors (D2Rs) remains underexplored.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a neurodegenerative disease showing uncontrollable motor symptoms that are primarily caused by the progressive loss of dopaminergic neurons in the brain. Currently no treatment exists to prevent PD progression. Therefore, discovery of new neuroprotective strategies still has great potential to benefit PD patients.

View Article and Find Full Text PDF

Synchrotron X-ray fluorescence microscopy (SXRF) presents a valuable opportunity to study the metallome of single cells because it simultaneously provides high-resolution subcellular distribution and quantitative cellular content of multiple elements. Different sample preparation techniques have been used to preserve cells for observations with SXRF, with a goal to maintain fidelity of the cellular metallome. In this case study, mouse pancreatic beta-cells have been preserved with optimized chemical fixation.

View Article and Find Full Text PDF

Neuronal activity can enhance tau release and thus accelerate tauopathies. This activity-dependent tau release can be used to study the progression of tau pathology in Alzheimer's disease (AD), as hyperphosphorylated tau is implicated in AD pathogenesis and related tauopathies. However, our understanding of the mechanisms that regulate activity-dependent tau release from neurons and the role that tau phosphorylation plays in modulating activity-dependent tau release is still rudimentary.

View Article and Find Full Text PDF

Pancreatic beta-cells synthesize and secrete insulin maintaining an organism's energy homeostasis. In humans, beta-cell dysfunction and death contribute to the pathogenesis of type 2 diabetes (T2D). Although the causes of beta-cell dysfunction are complex, obesity-induced low-grade systemic inflammation plays a role.

View Article and Find Full Text PDF

The belief that the vertebrate brain functions normally without classical lymphatic drainage vessels has been held for many decades. On the contrary, new findings show that functional lymphatic drainage does exist in the brain. The brain lymphatic drainage system is composed of basement membrane-based perivascular pathway, a brain-wide glymphatic pathway, and cerebrospinal fluid (CSF) drainage routes including sinus-associated meningeal lymphatic vessels and olfactory/cervical lymphatic routes.

View Article and Find Full Text PDF

Increasing evidence suggests that metal dyshomeostasis plays an important role in human neurodegenerative diseases. Although distinctive metal distributions are described for mature hippocampus and cortex, much less is known about metal levels and intracellular distribution in individual hippocampal neuronal somata. To solve this problem, we conducted quantitative metal analyses utilizing synchrotron radiation X-Ray fluorescence on frozen hydrated primary cultured neurons derived from rat embryonic cortex (CTX) and two regions of the hippocampus: dentate gyrus (DG) and CA1.

View Article and Find Full Text PDF

The divalent cation chelator 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA), often used to buffer physiological changes in cytosolic Ca(2+), also binds Zn(2+) with high affinity. In a recently published method (Lamboley et al. 2015.

View Article and Find Full Text PDF

Correction for 'Understanding metal homeostasis in primary cultured neurons. Studies using single neuron subcellular and quantitative metallomics' by Robert A. Colvin et al.

View Article and Find Full Text PDF

The purpose of this study was to demonstrate how single cell quantitative and subcellular metallomics inform us about both the spatial distribution and cellular mechanisms of metal buffering and homeostasis in primary cultured neurons from embryonic rat brain, which are often used as models of human disease involving metal dyshomeostasis. The present studies utilized synchrotron radiation X-ray fluorescence (SRXRF) and focused primarily on zinc and iron, two abundant metals in neurons that have been implicated in the pathogenesis of neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. Total single cell contents for calcium, iron, zinc, copper, manganese, and nickel were determined.

View Article and Find Full Text PDF

ATP plays central roles in cancer metabolism and the Warburg effect. Intratumoral ATP concentrations are up to 10(4) times higher than those of interstitial ATP in normal tissues. However, extracellular ATP is not known to enter cancer cells.

View Article and Find Full Text PDF

Our knowledge of the molecular mechanisms of intracellular homeostatic control of zinc ions is now firmly grounded on experimental findings gleaned from the study of zinc proteomes and metallomes, zinc transporters, and insights from the use of computational approaches. A cell's repertoire of zinc homeostatic molecules includes cytosolic zinc-binding proteins, transporters localized to cytoplasmic and organellar membranes, and sensors of cytoplasmic free zinc ions. Under steady state conditions, a primary function of cytosolic zinc-binding proteins is to buffer the relatively large zinc content found in most cells to a cytosolic zinc(ii) ion concentration in the picomolar range.

View Article and Find Full Text PDF

As humans age, cognitive performance decreases differentially across individuals. This age-related decline in otherwise healthy individuals is likely due to the interaction of multiple factors including genetics and environment. We hypothesized that altered spatial memory performance in genetically similar mice could be in part due to differential gene expression patterns in the hippocampus.

View Article and Find Full Text PDF

Zinc dyshomeostasis in brain might be involved in the pathogenesis of a series of brain diseases such as Alzheimer's disease and stroke. It is essential that the level of intracellular free Zn2+ in neurons is tightly controlled to maintain a narrow window of optimal concentration. The plasma membrane bound transporter ZnT1 is suggested to lower intracellular Zn2+ concentration.

View Article and Find Full Text PDF

Zinc dyshomeostasis in brain might be involved in the pathogenesis of brain diseases such as Alzheimer's disease and stroke. Resting neurons tightly regulate and maintain low to subnanomolar levels of intracellular free Zn2+, but mechanisms of normal Zn2+ homeostasis are poorly understood. In this study, the mechanisms of transporter-mediated Zn2+extrusion across the plasma membrane of cultured cortical neurons were studied.

View Article and Find Full Text PDF

To understand the mechanisms of neuronal Zn2+ homeostasis better, experimental data obtained from cultured cortical neurons were used to inform a series of increasingly complex computational models. Total metals (inductively coupled plasma-mass spectrometry), resting metallothionein, (65)Zn2+ uptake and release, and intracellular free Zn2+ levels using ZnAF-2F were determined before and after neurons were exposed to increased Zn2+, either with or without the addition of a Zn2+ ionophore (pyrithione) or metal chelators [EDTA, clioquinol (CQ), and N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine]. Three models were tested for the ability to match intracellular free Zn2+ transients and total Zn2+ content observed under these conditions.

View Article and Find Full Text PDF

Several studies have shown intracellular Zn(2+) release and concomitant cell death after prolonged exposure to exogenous NO. In the present study, we investigated whether cortical neurons briefly exposured to exogenous NO would demonstrate similar levels of intracellular Zn(2+) release and subsequent cell death. Cortical neurons were loaded with the Zn(2+) selective fluorophore FluoZin-3 and treated with various concentrations of the NO generator, spermine NONOate.

View Article and Find Full Text PDF

Zinquin (Zn(2+) selective fluorophore), when used to visualize intracellular Zn(2+), typically shows brightly fluorescent perinuclear endosome-like structures, presumably identifying Zn(2+) containing organelles. In this study, zinquin identified numerous and widespread sites of Zn(2+) compartmentalization in primary cultures of embryonic rat cortical neurons. Nuclear fluorescence, however, was absent.

View Article and Find Full Text PDF

Using both ZnAF-2F (a Zn2+ specific fluorophore) and 65Zn2+, we determined the rate of transporter mediated Zn2+ influx (presumably mediated by the SLC39A1 gene product, protein name hZIP1) under steady state conditions and studied the effects of extracellular acidification. When K562 erythroleukemia cells were placed in Zn2+ containing buffers (1-60 microM), the initial rate of 65Zn2+ accumulation mirrored the apparent rise in free intracellular Zn2+ concentrations sensed by ZnAF-2F. Therefore, newly transported Zn2+ equilibrated with the free intracellular Zn2+ pool sensed by ZnAF-2F.

View Article and Find Full Text PDF

Intracellular pH in pheochromocytoma (PC12) cells was manipulated by 'acid loading' the cells and the effect of such a change on radioactive zinc uptake was studied. It was found that zinc uptake was stimulated in cells loaded with protons without causing any measurable change in the intracellular pH. To confirm our assumption that the proton flux due to zinc entry is too small to be measured, we calculated the pH change that one would expect because of zinc influx.

View Article and Find Full Text PDF

Although the presence of Zn2+ in the brain has been known for nearly half a century, only recently has its precise location and potential roles as a neuromodulator and signaling molecule as well as neurotoxic agent come to the forefront. Unfortunately, our understanding of Zn2+ homeostatic mechanisms lags far behind. The recent identification of presumed Zn2+ transporters has opened new approaches to studying Zn2+ homeostatic mechanisms in neurons.

View Article and Find Full Text PDF