Publications by authors named "Robert A Binstead"

In aqueous solution above pH 2.4 with 4% (vol/vol) CH3CN, the complex [Ru(II)(bda)(isoq)2] (bda is 2,2'-bipyridine-6,6'-dicarboxylate; isoq is isoquinoline) exists as the open-arm chelate, [Ru(II)(CO2-bpy-CO2(-))(isoq)2(NCCH3)], as shown by (1)H and (13)C-NMR, X-ray crystallography, and pH titrations. Rates of water oxidation with the open-arm chelate are remarkably enhanced by added proton acceptor bases, as measured by cyclic voltammetry (CV).

View Article and Find Full Text PDF

The use of electropolymerization to prepare electrocatalytically and photocatalytically active electrodes for water oxidation is described. Electropolymerization of the catalyst Ru(II)(bda)(4-vinylpyridine)2 (bda=2,2'-bipyridine-6,6'-dicarboxylate) on planar electrodes results in films containing semirigid polymer networks. In these films there is a change in the water oxidation mechanism compared to the solution analogue from bimolecular to single-site.

View Article and Find Full Text PDF

Rapid water oxidation catalysis is observed following electrochemical oxidation of [Ru(II)(tpy)(bpz)(OH)](+) to [Ru(V)(tpy)(bpz)(O)](3+) in basic solutions with added buffers. Under these conditions, water oxidation is dominated by base-assisted Atom Proton Transfer (APT) and direct reaction with OH(-). More importantly, we report here that the Ru(IV)═O(2+) form of the catalyst, produced by 1e(-) oxidation of [Ru(II)(tpy)(bpz)(OH2)](2+) to Ru(III) followed by disproportionation to [Ru(IV)(tpy)(bpz)(O)](2+) and [Ru(II)(tpy)(bpz)(OH2)](2+), is also a competent water oxidation catalyst.

View Article and Find Full Text PDF

Oxidation of the NADH analogue, N-benzyl-1,4-dihydronicotinamide (BNAH), by the 1e(-) acceptor, [Os(dmb)3](3+), and 2e(-)/2H(+) acceptor, benzoquinone (Q), has been investigated in aqueous solutions over extended pH and buffer concentration ranges by application of a double-mixing stopped-flow technique in order to explore the redox pathways available to this important redox cofactor. Our results indicate that oxidation by quinone is dominated by hydride transfer, and a pathway appears with added acids involving concerted hydride-proton transfer (HPT) in which synchronous transfer of hydride to one O-atom at Q and proton transfer to the second occurs driven by the formation of the stable H2Q product. Oxidation by [Os(dmb)3](3+) occurs by outer-sphere electron transfer including a pathway involving ion-pair preassociation of HPO4(2-) with the complex that may also involve a concerted proton transfer.

View Article and Find Full Text PDF

Artificial photosynthesis and the production of solar fuels could be a key element in a future renewable energy economy providing a solution to the energy storage problem in solar energy conversion. We describe a hybrid strategy for solar water splitting based on a dye sensitized photoelectrosynthesis cell. It uses a derivatized, core-shell nanostructured photoanode with the core a high surface area conductive metal oxide film--indium tin oxide or antimony tin oxide--coated with a thin outer shell of TiO2 formed by atomic layer deposition.

View Article and Find Full Text PDF

We report here the application of a simple hydrodynamic technique, linear sweep voltammetry with a modified rotating-ring-disc electrode, for the study of water oxidation catalysis. With this technique, we have been able to reliably obtain turnover frequencies, overpotentials, Faradaic conversion efficiencies, and mechanistic information from single samples of surface-bound metal complex catalysts.

View Article and Find Full Text PDF

The photodriven accumulation of two oxidative equivalents at a single site was investigated on TiO2 coloaded with a ruthenium polypyridyl chromophore [Ru(bpy)2((4,4'-(OH)2PO)2bpy)](2+) (Ru(II)P(2+), bpy = 2,2'-bipyridine, ((OH)2PO)2-bpy = 2,2'-bipyridine-4,4'-diyldiphosphonic acid) and a water oxidation catalyst [Ru(Mebimpy) ((4,4'-(OH)2PO-CH2)2bpy)(OH2)](2+) (Ru(II)OH2(2+), Mebimpy = 2,6-bis(1-methylbenzimidazol-2-yl)pyridine, (4,4'-(OH)2PO-CH2)2bpy) = 4,4'-bis-methlylenephosphonato-2,2'-bipyridine). Electron injection from the metal-to-ligand charge transfer (MLCT) excited state of -Ru(II)P(2+) (-Ru(II)P(2+)*) to give -Ru(III)P(3+) and TiO2(e(-)) was followed by rapid (<20 ns) nearest-neighbor -Ru(II)OH2(2+) to -Ru(III)P(3+) electron transfer. On surfaces containing both -Ru(II)P(2+) and -Ru(III)OH2(3+) (or -Ru(III)OH(2+)), -Ru(II)OH2(2+) was formed by random migration of the injected electron inside the TiO2 nanoparticle and recombination with the preoxidized catalyst, followed by relatively slow (μs-ms) non-nearest neighbor cross-surface electron transfer from -Ru(II)OH2(2+) to -Ru(III)P(3+).

View Article and Find Full Text PDF

Reductive electropolymerization of [Ru(II)(PhTpy)(5,5'-dvbpy)(Cl)](PF6) and [Ru(II)(PhTpy)(5,5'-dvbpy)(MeCN)](PF6)2 (PhTpy is 4'-phenyl-2,2':6',2″-terpyridine; 5,5'-dvbpy is 5,5'-divinyl-2,2'-bipyridine) on glassy carbon electrodes gives well-defined films of poly{[Ru(II)(PhTpy)(5,5'-dvbpy)(Cl)](PF6)} (poly-1) or poly{[Ru(II)(PhTpy)(5,5'-dvbpy)(MeCN)](PF6)2} (poly-2). Oxidative cycling of poly-2 with added NO3(-) results in the replacement of coordinated MeCN by NO3(-) to give poly{[Ru(II)(PhTpy)(5,5'-dvbpy)(NO3)](+)}, and with 0.1 M HClO4, replacement by H2O occurs to give poly{[Ru(II)(PhTpy)(5,5'-dvbpy)(OH2)](2+)} (poly-OH2).

View Article and Find Full Text PDF

The synthesis, characterization, and redox properties are described for a new ruthenium-based chromophore-catalyst assembly, [(bpy)(2)Ru(4-Mebpy-4'-bimpy)Ru(tpy)(OH(2))](4+) (1, [Ru(a)(II)-Ru(b)(II)-OH(2)](4+); bpy = 2,2'-bipyridine; 4-Mebpy-4'-bimpy = 4-(methylbipyridin-4'-yl)-N-benzimid-N'-pyridine; tpy = 2,2':6',2"-terpyridine), as its chloride salt. The assembly incorporates both a visible light absorber and a catalyst for water oxidation. With added ceric ammonium nitrate (Ce(IV), or CAN), both 1 and 2, [Ru(tpy)(Mebim-py)(OH(2))](2+) (Mebim-py = 2-pyridyl-N-methylbenzimidazole), catalyze water oxidation.

View Article and Find Full Text PDF

Visible light excitation of the ligand-bridged assembly [(bpy)(2)Ru(a)(II)(L)Ru(b)(II)(bpy)(OH(2))(4+)] (bpy is 2,2'-bipyridine; L is the bridging ligand, 4-phen-tpy) results in emission from the lowest energy, bridge-based metal-to-ligand charge transfer excited state (L(-•))Ru(b)(III)-OH(2) with an excited-state lifetime of 13 ± 1 ns. Near-diffusion-controlled quenching of the emission occurs with added HPO(4)(2-) and partial quenching by added acetate anion (OAc(-)) in buffered solutions with pH control. A Stern-Volmer analysis of quenching by OAc(-) gave a quenching rate constant of k(q) = 4.

View Article and Find Full Text PDF

Benzoquinone/hydroquinone redox interconversion by the reversible Os(dmb)(3)(3+/2+) couple over an extended pH range with added acids and bases has revealed the existence of seven discrete pathways. Application of spectrophotometric monitoring with stopped-flow mixing has been used to explore the role of PCET. The results have revealed a role for phosphoric acid and acetate as proton donor and acceptor in the concerted electron-proton transfer reduction of benzoquinone and oxidation of hydroquinone, respectively.

View Article and Find Full Text PDF

During efforts to stabilize metal oxide bound chromophores for photoelectrochemical applications, a novel photochemical reaction has been discovered. In the reaction, the bisphosphonate functional groups -C(PO(3)H(2))(2)(OH) in the metal complex [Ru(bpy)(2)(4,4'-(C(OH)(PO(3)H(2))(2)bpy)](2+) are converted into -COOH and H(3)PO(4). The reaction occurs by sensitized formation of (1)O(2) by the lowest metal-to-ligand charge transfer excited state(s) of [Ru(bpy)(2)(4,4'-(C(PO(3)H(2))(2)(OH))(2)(bpy))](2+)* followed by (1)O(2) oxidation of the bisphosphonate substituent.

View Article and Find Full Text PDF

The synthesis and analysis of a new amide-linked, dinuclear [Ru(bpy)(2)(bpy-ph-NH-CO-trpy)Ru(bpy)(OH(2))](4+) (bpy = 2,2'-bipyridine; bpy-ph-NH-CO-trpy = 4-(2,2':6',2"-terpyridin-4'-yl)-N-[(4'-methyl-2,2'-bipyridin-4-yl)methyl]benzamide) assembly that incorporates both a light-harvesting chromophore and a water oxidation catalyst are described. With the saturated methylene linker present, the individual properties of both the chromophore and catalyst are retained including water oxidation catalysis and relatively slow energy transfer from the chromophore excited state to the catalyst.

View Article and Find Full Text PDF

Four distinct intermediates, Ru(IV)═O(2+), Ru(IV)(OH)(3+), Ru(V)═O(3+), and Ru(V)(OO)(3+), formed by oxidation of the catalyst [Ru(Mebimpy)(4,4'-((HO)(2)OPCH(2))(2)bpy)(OH(2))](2+) [Mebimpy = 2,6-bis(1-methylbenzimidazol-2-yl) and 4,4'-((HO)(2)OPCH(2))(2)bpy = 4,4'-bismethylenephosphonato-2,2'-bipyridine] on nanoITO (1-PO(3)H(2)) have been identified and utilized for electrocatalytic benzyl alcohol oxidation. Significant catalytic rate enhancements are observed for Ru(V)(OO)(3+) (~3000) and Ru(IV)(OH)(3+) (~2000) compared to Ru(IV)═O(2+). The appearance of an intermediate for Ru(IV)═O(2+) as the oxidant supports an O-atom insertion mechanism, and H/D kinetic isotope effects support net hydride-transfer oxidations for Ru(IV)(OH)(3+) and Ru(V)(OO)(3+).

View Article and Find Full Text PDF
Article Synopsis
  • Tryptophan is distinct among redox-active amino acids due to its indolic proton being weakly acidic (pK(a) ≈ 16), unlike tyrosine and cysteine, which have lower pK(a) values.
  • Research using stopped-flow and electrochemical techniques has examined how proton-coupled electron transfer and concerted electron-proton transfer contribute to the oxidation of tryptophan.
  • Findings indicate that OH(-) acts as a proton acceptor in the electron-proton transfer oxidation of N-acetyl-tryptophan, and the study also estimates the reorganizational barrier for its self-exchange reaction.
View Article and Find Full Text PDF