Rationale: Stress may elevate ethanol drinking and anxiety associated with ethanol drinking. Studies to identify relevant neurobiological substrates are needed.
Objective: To assess roles of brain regions in corticotrophin releasing factor (CRF) effects on stressor-enhanced, ethanol deprivation-induced drinking and anxiety-like behavior.
Stress has been shown to facilitate ethanol withdrawal-induced anxiety. Defining neurobiological mechanisms through which stress has such actions is important given the associated risk of relapse. While CRF has long been implicated in the action of stress, current results show that stress elevates the cytokine TNFα in the rat brain and thereby implicates cytokines in stress effects.
View Article and Find Full Text PDFBackground: The benzodiazepine receptor antagonist flumazenil reduces anxiety-like behavior and sensitization of anxiety-like behavior in various models of ethanol withdrawal in rodents. The mechanism and brain region(s) that account for this action of flumazenil remain unknown. This investigation explored the potential role of several brain regions (amygdala, raphe, inferior colliculus, nucleus accumbens, and paraventricular hypothalamus) for these actions of flumazenil.
View Article and Find Full Text PDFPrevious investigations demonstrated that repeated stresses before an ethanol exposure sensitize ethanol withdrawal-induced anxiety-like behavior ('anxiety'). In addition to activating the hypothalamic-pituitary-adrenal axis, acute stress also elevates cytokines in brain. Initially, to test possible cytokine involvement in this stress/withdrawal protocol, cytokines were increased in brain with 2 weekly repeated lipopolysaccharide (LPS) administrations (1000 microg/kg) [corrected] (LPS/withdrawal protocol) or with twice weekly intracerebroventricular (i.
View Article and Find Full Text PDFRationale: Anxiety-like behavior resulting from repeated withdrawals from chronic ethanol diets is counteracted by systemic administration of a 5-HT2C receptor antagonist or a 5-HT1A receptor partial agonist.
Objectives: This study investigated whether prior treatment with these agents into the amygdala, dorsal raphe nucleus, nucleus accumbens, or paraventricular nucleus during early withdrawals would ameliorate the social interaction deficits observed after a subsequent withdrawal.
Methods: Sprague-Dawley rats were exposed to three cycles of 5 days of forced ethanol diet (4.