Background: High concentration protein formulation (HCPF) development needs to balance protein stability attributes such as conformational/colloidal stability, chemical stability, and solution properties such as viscosity and osmolality.
Methodology: A three-phase design is established in this work. In Phase 1, conformational and colloidal stability are measured by 384-well-based high-throughput (HT) biophysical screening while viscosity reduction screening is performed with HT viscosity screening.
We present a study of the optical properties of three-armed square nanospirals made of silver and realized as nanostructured thin films with Glancing Angle Deposition. Calculation of current flows in the nanospirals show excited resonant modes resembling those observed in U-shaped resonators. Four principal resonances were determined: near 200 THz and 480 THz for one polarization and 250 THz and 650 THz for the polarization orthogonal to the first one.
View Article and Find Full Text PDFWe present the technique of bideposition to realize thin-film helicoidal bianisotropic mediums (TFHBM's) that exhibit high optical activity. We show, by experiment as well as by simulation, that the optical rotation produced by these chiral sculptured thin films is roughly proportional to the square of the local linear birefringence. Experimental measurements on bideposited TFHBM's of titanium oxide yield a typical value of 5 degrees /mum for the effective specific rotation in the short-wavelength regime; the corresponding value determined for the standard unideposited TFHBM's is 1 degrees /mum.
View Article and Find Full Text PDFThis review is presented as a common foundation for scientists interested in nanoparticles, their origin,activity, and biological toxicity. It is written with the goal of rationalizing and informing public health concerns related to this sometimes-strange new science of "nano," while raising awareness of nanomaterials' toxicity among scientists and manufacturers handling them.We show that humans have always been exposed to tiny particles via dust storms, volcanic ash, and other natural processes, and that our bodily systems are well adapted to protect us from these potentially harmful intruders.
View Article and Find Full Text PDFRugate filters are thin-film optical interference coatings with sinusoidal variation of the refractive index. Several of these filters were fabricated with glancing angle deposition, which exploits atomic competition during growth to create nanoporous materials with controllable effective refractive index. This method enables the fabrication of devices with almost arbitrary refractive index profiles varying between the ambient, 1.
View Article and Find Full Text PDFWe present a design for a biaxial thin-film coated-plate polarizing beam splitter that transmits the p-polarized component of a beam of light without change of direction and reflects the s-polarized component. The beam splitter has a periodic structure and is planned for fabrication by serial bideposition in mutually orthogonal planes. Recent experimental data for form-birefringent silicon is used to establish the feasibility of the design for a beam splitter to be used at 1310 nm and at an angle of 45 degrees in air.
View Article and Find Full Text PDFNanocolumn pseudo-regular arrays of silicon with controlled aspect ratio and porosity are fabricated by electron-beam evaporation using the glancing angle deposition (GLAD) method with vapour impinging at oblique incidence onto rapidly rotating substrates. The width W at positions y along the height of one individual column scales with y following a power law dependence W approximately y(p). We demonstrate that the scaling exponent value, p, can be modified from 0.
View Article and Find Full Text PDFWe report an experimental study of enhanced optical birefringence in silicon thin films on glass substrates. Form anisotropy is introduced as an atomic-scale morphological structure through dynamic control of growth geometry. The resulting birefringence is large compared with naturally anisotropic crystals and is comparable to two-dimensional photonic crystals.
View Article and Find Full Text PDFAnisotropic optical coatings offer unique polarizing properties, unmatched by conventional isotropic devices. Here we demonstrate the fabrication of a birefringent omnidirectional reflector, a type of photonic crystal, which exhibits complete reflection of radiation at 1.1 microm for all incidence angles and polarizations.
View Article and Find Full Text PDFPorous materials with nanometer-scale structure are important in a wide variety of applications including electronics, photonics, biomedicine, and chemistry. Recent interest focuses on understanding and controlling the properties of these materials. Here we demonstrate porous silicon interference filters, deposited in vacuum with a technique that enables continuous variation of the refractive index between that of bulk silicon and that of the ambient (n approximately 3.
View Article and Find Full Text PDF